
Introduction to algebraic theory of linear error
correcting codes (incomplete version)

Robert Rolland

September 29, 2009



2



Contents

1 Basic facts 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Simple example . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Alphabet, basic structures . . . . . . . . . . . . . . . . . . . . 6
1.4 Linear algebraic aspects of linear codes . . . . . . . . . . . . . 6

1.4.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.2 Hamming distance, correction ability, parameters . . . 7
1.4.3 Definition of a code . . . . . . . . . . . . . . . . . . . . 9
1.4.4 General schemes for encoding and decoding . . . . . . 9
1.4.5 Dual codes . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Concrete linear codes built with polynomial functions 17
2.1 Concrete codes . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Order one Reed Muller codes . . . . . . . . . . . . . . . . . . 17

2.2.1 Definition, parameters, encoding . . . . . . . . . . . . . 17
2.2.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Reed Solomon codes . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 A systematic encoder for C . . . . . . . . . . . . . . . 22
2.3.3 Another encoder for C . . . . . . . . . . . . . . . . . . 23
2.3.4 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Families of codes 25
3.1 Codes domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3



4 CONTENTS



Chapter 1

Basic facts

1.1 Introduction

The following notes are an approach for beginners of linear block coding
theory. We only tackle a little bit of the theory. In particular we don’t
speak about the probabilistic aspects, we don’t study all the numerous type
of codes etc ...

1.2 Simple example

Let us suppose that we want to transmit the message

01101

and let us in fact transmit the message three times

011010110101101.

By majority logic, if no more than one error occurs during the transmis-
sion process, we can recover the true message.

If two errors occur during the transmission, it is not always possible to
recover the true message. For example the wrong message (2 errors)

001010010101101,

decoded by majority logic, gives the wrong result

5



6 Chapter 1

00101.

But it is always possible to detect errors.

If three errors or more occur during the transmission, it is not always
possible to detect errors. For example the wrong message (3 errors)

001010010100101

is considered as an errorfree message.

We say that this code

• corrects one error,

• detects two errors.

The method involved here is to send a longer message than the initial one
and to use the redundancy of the encoded message to compute the most
probable initial message.

1.3 Alphabet, basic structures

If you want to represent information in a suitable form, allowing an easy
processing, you have to choose a set of symbols (the alphabet) with a rich
structure, to write this information. The finite fields are very convenient for
such a task.

1.4 Linear algebraic aspects of linear codes

1.4.1 Generalities

Let Fq be the finite field with q elements where q = pm is a power of a prime
number.

Let E be a k-dimensional vector space over the field Fq, with a fixed basis
(e1, e2, · · · , ek).

Let F be a n-dimensional vector space over the field Fq, with a fixed basis
(f1, f2, · · · , fn). We suppose n > k.



Basic facts 7

Let l be a linear injection from E into F . The subspace C = l(E) is a code.

For transmission purpose we use this situation in the following way.

Fk
q

l−→ Fn
q  Fn

q

C = l(Fk
q)

u = (u1, · · · , uk) x = (x1, · · · , xn) y = (y1, · · · , yn)

u is the raw word,
x ∈ C is the encoded word,
y = x+ e is the received word and e the error.
If y ∈ C you assume that probably y = x. When y is not in C, errors occur.
In this case the problem is to recover x from y. To do this we try to find
the nearest word in some sense of x wich is in C. Computing u from x is
an another problem which is not the problem of error correction but just the
resolution of the linear system l(u) = x.

So now, we are focused on the problem of recovering x from y.

1.4.2 Hamming distance, correction ability, parame-
ters

To formalize the problem we define an adapted notion of distance between
words of F .
Let us define the Hamming distance ∆ on F by

∆(x, y) = Card{i | xi 6= yi}.
As an obvious application, if x is en encoded message and y the received
message, we claim that ∆(x, y) errors occur.

The dimension n of F is called the length of the code. The dimension k
of C (or of E) is called the dimension of the code.

To avoid confusion between the codewords, each word of C must be far from
the other words of C. We define the minimal distance of the code

d(C) = min{∆(x, x′) | x 6= x′, x ∈ C, x′ ∈ C}.

Taking into account the linear structure of F we define the weight of a word

w(x) = Card{i | xi 6= 0},



8 Chapter 1

So that
∆(x, y) = w(x− y),

and
d(C) = inf{w(x) | x 6= 0, x ∈ C}.

The parameters of a code C are its length, its dimension, its minimal
distance. A code with length n, dimension k and minimal distance d is
called a [n, k, d]-code.

Clearly we try to obtain codes with large minimal distance and low rate of
increase of the word length. To go into more details we define the rate of
the code or the efficiency of the code

R =
k

n
,

and the relative distance of the code

δ =
d

n
.

We are now in position to compute the correction ability of a code.

Theorem 1.4.1 Let C be a code with minimal distance d(C). Then C cor-
rects

t =

[
d(C)− 1

2

]
errors.
That is, if during a transmission the number of errors is ≤ t, we can recover
the true transmitted word x from the wrong received word y because there is
only one x which is at minimum hamming distance from y.
This number t is optimum,

Proof. Let x the transmitted message and y the received one. Let x′ ∈ C
with x′ 6= x. Then ∆(x, x′) ≥ d. But by triangle inequality

∆(y, x′) ≥ |∆(x, x′)−∆(x, y)|

so,
∆(y, x′) ≥ d(C)− t > t.

Let us remark that if in the transmission process the number of errors is > t
and if x is a word in C such that w(x) = d(C), it is possible to receive a
word which is nearest from 0 than from x, and the correction is impossible
because 0 ∈ C.



Basic facts 9

1.4.3 Definition of a code

We have seen in the previous paragraph that the correcting process depends
only on the space F and its subspace C. The space E and the linear function
l are just a mean to encode the raw words. The encoder, that is the space
E, the choosen basis of E, the linear injection l, can be changed. Different
encoders can use the same code.

Definition 1.4.1 A linear code is a subspace of a finite dimensional vector
space F , over a finite field Fq, in wich a basis (f1, f2, · · · , fn) is fixed.

Remark: when a basis of F is fixed we have a natural isomorphism from F
into Fn

q . So we can define a linear code to be a subspace of an Fn
q .

1.4.4 General schemes for encoding and decoding

Generator matrix

Let F be a space of dimension n over Fq with a fixed basis (f1, f2, · · · , fn)
and C a subspace of F of dimension k (a code of length n and dimension k).

Let us suppose that we have an encoder for this code, that is a space E of
dimension k, a basis (e1, e2, · · · , ek) of E and l a linear injection from E into
F such that C = l(E).
The transposed matrix G of the matrix of l relative to the given basis is a
generator matrix of C. If u = (u1, u2, · · · , uk) is a raw word, the corre-
sponding encoded word is

x = uG.

Remark: in coding theory, we use to write the components of a word in a
row and not in a column, so for a linear application we have to transpose the
matrix.

The matrix G has k rows and n columns.

Example: An Hamming code on F2.

E = F4
2 F = F7

2,

G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1





10 Chapter 1

If u = (u1, u2, u3, u4) and x = (x1, x2, x3, x4, x5, x6, x7) such that x = uG,
then

x1 = u1, x2 = u2, x3 = u3, x4 = u4,

x5 = u2 + u3 + u4, x6 = u1 + u3 + u4, x7 = u1 + u2 + u4.

Check application, parity check matrix

A linear application h from F into a linear space F ′ such that C = Ker(h)
is call a check application. When we receive a word y we verifie that this
word is a codeword by computing h(y) (called the syndrom). If h(y) = 0
we assume that the word is errorfree.
It is easy to see that the rank of such an h is

rg(h) = n− k = r.

The number r is called the redondancy.
The matrix H of h when F is endowed with the given basis and F ′ with any
basis is called a parity check matrix.

Linear algebra characterization of the minimal distance

Let h a check application of a code C ⊂ F and (f1, f2, · · · , fn) the given
basis of F .

Theorem 1.4.2 The number d is the minimal distance of the code C if and
only if

a) There is a family of d vectors in the family (h(fi))i which is linearly
dependant.

b) Each family with d−1 vectors extracted from the family (h(fi))i is free.

Proof. Let d the minimal distance of the code. There is a codeword of
weight d

x = xi1fi1 + · · ·+ xidfid .

Hence

h(x) = xi1h(fi1) + · · ·+ xidh(fid).



Basic facts 11

But x is a codeword, so h(x)=0. Hence h(fi1), · · · , h(fid) are linearly depen-
dant. Now if there is a linear decomposition

λi1h(fi1) + · · ·+ λid−1
h(fid−1

) = 0,

we have
λi1fi1 + · · ·+ λid−1

fid−1
∈ C.

But the minimal weight for a non-null codeword is d. So λij = 0 for all j.

Reciprocally, if b) occurs, a non-null word of weight ≤ d− 1 cannot be in C.
If a) occurs, a codeword of weight d exists.
Example: Let us consider again the Hamming code on F2.

E = F4
2 F = F7

2,

G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


We can verify that

H =

0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1


is a parity check matrix. Two columns of H are always independant and
there exist three columns dependant. So the minimal distance is 3. This
code corrects 1 error.

The singleton bound

Theorem 1.4.3 Let C be a linear [n, k, d]-code. Then

d ≤ n− k + 1.

Proof. To prove the theoreme, let h be a parity check matrix. We have

dim(Ker(h)) + dim(Im(h)) = n.

Hence

dim(Im(h)) = n− k.



12 Chapter 1

But each family extracted from (h(f1), · · · , h(fn)) with d− 1 vectors is free,
so that d− 1 ≤ n− k.

This bound can be reached. Codes reaching this bound are called maximal
distance separable codes (MDS codes).

Systematic encoder

Let F be a linear space with a given basis (f1, · · · , fn). Let C be a code of
dimension k in F .

Theorem 1.4.4 We can choose a vector space E of dimension k, a basis
(e1, · · · , ek) of E, a linear bijective map l from E onto C and a permutation
of the basis of F such that the corresponding generator matrix is

G = [Ik A],

where Ik is the unit matrix of size k.

Proof. As a consequence of the incomplete basis theorem, it is possible
(with an eventual permutation of the basis of F ) to write

F = C
⊕

D,

where
D = [fk+1, · · · , fn].

Hence,

f1 = c1 + d1 c1 ∈ C, d1 ∈ D
f2 = c2 + d2 c2 ∈ C, d2 ∈ D

...
...

fk = ck + dk ck ∈ C, dk ∈ D.
The family (c1, · · · , ck) is a basis of C.

Let E = C, ei = ci and l the identity map. The generator matrix associated
to this encoder is in the needed form.

Such an encoder is called a systematic encoder. It is a very nice situation
to dispose of a systematic encoder because if the raw message is

(u1, u2, · · · , uk),



Basic facts 13

the encoded message is

(u1, u2, · · · , uk, xk+1, · · · , xn).

Theorem 1.4.5 If G = [Ik A] is the generator matrix of a systematic en-
coder for C, the matrix

H = [−At In−k]

is a parity check matrix for C.

Proof. With the notations of the previous theorem’s proof, let h be the
projection from F = C

⊕
D onto D with kernel C. The matrix of the check

function h is H = [−At In−k].

General decoding scheme

We give here a decoding scheme for an abstract linear code. This algorithm
is intractable for large codes.

Let x ∈ C be a codeword and y ∈ F the transmitted word. Hence y = x+ e
where e is the error. Let h be a check map. The syndrome of y is h(y).

h(y) = h(x) + h(e) = h(x).

Let F = F/Ker(h) = F/C. We can write

F = {Y1, Y2, · · · , Ys}

where

Yi = {ei, yi,2, yi,3, · · · , yi,r}

and where ei is one element of minimal weight among those in the same coset
Yi.

So, if the received message is y, we have to compute the syndrome h(y), then
find the class Yi of y and then choose the head ei of this class to be the most
probable occuring error. Hence we decode by x = y − ei.

This algorithm needs a long preprocessing: write down all the classes Yi and
for each class find a head and the common syndrome of the elements.



14 Chapter 1

1.4.5 Dual codes

To define and study dual codes we first recall some notions on vector space
duality.

Let F be a n dimensional vector space over Fq and let (f1, · · · , fn) be a fixed
basis of F .
Let us denote by φ the bilinear form on F×F defined by φ(x, y) =

∑n
i=1 xiyi =<

x, y >, where x =
∑
xifi and y =

∑
yifi.

Let T be the linear application from F into the algebraic dual F ∗ of F defined
by

T (y) = φy,

where

φy(x) = φ(x, y) =< x, y > .

Lemma 1.4.1 T is a linear isomorphism from F onto F ∗. That is, for all
g ∈ F ∗ there is one and only one y ∈ F such that

g(x) =< x, y > .

Proof. Let us compute the kernel of the linear application T . T (y) = φy = 0
if and only if for all x in F , we have φy(x) = 0, that is

∑
xiyi = 0. From the

particular values x = (0, · · · , 1, · · · , 0) we get yi=0.
Then Ker(T ) = {0} and T is injective. But dim(F ) = dim(F ∗), so that T
is one to one.

Let C a subspace of F . Let us define C⊥ to be

C⊥ = {y ∈ F | φy(x) = 0 ∀x ∈ C}.

We get the following lemma.

Lemma 1.4.2
C ⊂ C⊥⊥.

Proof. If x ∈ C then for all y in C⊥ we have < x, y >= 0, so that x ∈ C⊥⊥.

Lemma 1.4.3 If C1 ⊂ C2 then C⊥2 ⊂ C⊥1 .



Basic facts 15

Proof. If y ∈ C⊥2 then for all x in C2 and in particular for all x in C1 we
have < x, y >= 0, so that y ∈ C⊥1 .

Lemma 1.4.4

C = C⊥⊥.

Proof. Let x /∈ C. Let us complete x in a basis of F adding a basis
(a1, a2, · · · , ak) of C and eventually others vectors. We obtain a basis

(x, a1, a2, · · · , ak, ak+1, · · · , an−1).

Now, let ψ the linear form defined on F by

ψ(λ0x+ λ1a1 + · · ·+ λn−1an−1) = λ0

Let us remark that in particular ψ(x) = 1.
We know by 1.4.1 that there exist one and only one y such that for all u,

ψ(u) =< u, y > .

From the definition, if c ∈ C then ψ(c) = 0. So that < c, y >= 0. We
conclude that y ∈ C⊥ and < x, y >= 1, so that x /∈ C⊥⊥. The lemma
follows.

Lemma 1.4.5 Let (y1, · · · , ys) a free family in F , then the linear map θ
from F in Fs

q defined by

θ(x) = (< x, y1 >,< x, y2 >, · · · , < x, ys >)

is onto.

Proof. The rank of θ is the rank s of the vector family (y1, · · · , ys).
Now we precise the notion of dual code.

Definition 1.4.1 The dual code of C is C⊥.

Theorem 1.4.6 If H is a parity check matrix for C, H is a generator matrix
for C⊥ and if G is a generator matrice for C, G is a parity check matrix for
C⊥.



16 Chapter 1

Proof. Let (y1, · · · , ys) a basis of C⊥) and h the linear map defined on F
by

h(x) = (< x, y1 >, · · · , < x, ys >).

So, x ∈ Ker(h) if and only if for all i < x, yi >= 0 that is, if and only if for
all y ∈ C⊥ we have < x, y >= 0. Then

Ker(h) = C⊥⊥ = C.

Moreover, h is onto, hence s = n − k. Now, let ht the transposed of h. For
all u ∈ Fs

q and for all y ∈ F ,

< ht(u), y >=< u, h(y) > .

If y ∈ C we have h(y) = 0 and < ht(u), y >= 0. Hence ht(u) ∈ C⊥.
Moreover, ht is injective

ht(u) = 0⇔ ∀y ∈ F,< u, h(y) >= 0⇔ ∀z ∈ Fs
q, < u, z >= 0⇔ u = 0.

Hence Im(ht) = C⊥.

Now let g a linear encoder from Fk
q into F for C. We can write

gt(y) = 0⇔ ∀v,< gt(y), v >= 0⇔ ∀v,< y, g(v) >= 0,

gt(y) = 0⇔ ∀x ∈ C,< y, x >= 0.

Hence
gt(y) = 0⇔ y ∈ c⊥.



Chapter 2

Concrete linear codes built
with polynomial functions

2.1 Concrete codes

The vector space structure is not sufficient to dispose of a nice decoding
process. The general decoding scheme is intractable for large codes. So,
we define codes related with stronger structures, for example codes related
with spaces of functions. In that way we get new tools: multiplication of
functions, evaluation of functions, Fourier transform, etc ... These tools help
us to simplify the encoding and the decoding processes.

2.2 Order one Reed Muller codes

2.2.1 Definition, parameters, encoding

Let F be the space of functions from G = {0, 1}m into {0, 1}. Let us choose
the evaluation basis of F , that is the basis given by the family (ea)a∈{0,1}m

where

ea(x) =

{
1 if x = a
0 if x 6= a

,

ordered by the value

17



18 Chapter 2

val(a) =
m∑

i=1

ai2
i−1,

of a.
In this basis, f ∈ F is given by

f =
∑

a

f(a)ea,

that is by the row vector (f(a))a∈{0,1}m .

The order one reed-Muller code is the subsbace C of F of the polynomial
functions with m indeterminates and degree ≤ 1. Such a function can be
written

g(x1, x2, · · · , xm) = u0 + u1x1 + · · ·+ umxm.

The length of this code is 2m, its dimension is k = m+ 1.

Let f = (f(a))a∈{0,1}m ∈ F anf N(f) the number of zeroes of f . The weight
of f is given by

W (f) = 2m −N(f).

Then, if g is a non-constant polynomial function in C, N(g) is the cardinality
of an hypersurface,

N(g) = 2m−1,

and
W (g) = 2m − 2m−1 = 2m−1.

So the weight repartition is:
one word of weight 0 (the word g = 0),
one word of weight 2m (the word g = 1)
the others (2k − 2 words) of weight 2m−1.

In particular, the minimal distance is d = 2m−1.

It is easy to describe an encoding process:
starting from a raw word (u0, u1, · · · , um), we consider the polynomial func-
tion g(x1, · · · , xm) = u0 +u1x1 + · · ·umxm and then we compute the encoded
word

(g(0, 0, · · · , 0), g(1, 0, · · · , 0), g(0, 1, 0, · · · , 0), g(1, 1, 0, · · · , 0), · · · , g(1, 1, · · · , 1)).



2.2. ORDER ONE REED MULLER CODES 19

2.2.2 Decoding

Hadamard transform

The Hadamard transform is the Fourier transform related to the group
{0, 1}m. The characters of this group are the Walsh functions

χu(v) = (−1)<u,v>,

where u = (u1, u2, · · · , um) , v = (v1, v2, · · · , vm) and < u, v >= u1v1 + · · ·+
umvm. The Hadamard transform of a complex valued function φ is defined
by

φ̂(v) =
∑

u

φ(u)(−1)<u,v>.

We know that

φ(u) =
1

2m

∑
v

φ̂(v)(−1)<u,v>.

Remark: the elements u, v ∈ {0, 1}m can be considered as numbers between
0 and 2m−1, using binary representation. We will use the two interpretations.

Let us explain now how to compute the Hadamard transform of φ by the
Fast Hadamard Transform algorithm.

We must evaluate

P (x) =
2r−1∑
y=0

ay(−1)<x,y>

where x = (x1, x2, ..., xr) et y = (y1, y2, ..., yr). Let us define

P0(u) =
2r−1−1∑

v=0

au(−1)<u,v>

and

P1(u) =
2r−1−1∑

v=0

au+2r−1(−1)<u,v>

where u = (u1, u2, ..., ur−1) et v = (v1, v2, ..., vr−1). We can write

P (x) = P0(τ(x)) + (−1)xrP1(τ(x))



20 Chapter 2

where τ(x) = (x1, x2, ..., xr−1).

Let us consider the case n = 23 = 8. We obtain

P000(X) = a0, P001(X) = a1, P010(X) = a2, P011(X) = a3

P100(X) = a4, P101(X) = a5, P110(X) = a6, P111(X) = a7

and the fast Hadamard transform is done following the figure 2.1.

c c c c c c c c

c c c c c c c c

c c c c c c c c

c c c c c c c c

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

A
A
A
A
A
A
A
AU

A
A
A
A
A
A
A
AU

A
A
A
A
A
A
A
AU

A
A
A
A
A
A
A
AU

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

@
@
@
@
@
@
@
@
@R

@
@
@
@
@
@
@
@
@R

@
@
@
@
@
@
@
@
@R

@
@
@
@
@
@
@
@
@R

�
�

�
�

�
�
�

�
�	

�
�

�
�

�
�
�

�
�	

�
�

�
�
�

�
�
�

�	

�
�

�
�
�

�
�
�

�	

H
HHH

HHH
HHH

HHH
HHH

HHHj

H
HHH

HHH
HHH

HHH
HHH

HHHj

HHHH
HHH

HHH
HHH

HHH
HHHj

HHH
HHH

HHH
HHH

HHHH
HHHj

���
���

���
���

���
���

��

���
���

���
���

���
���

��

��
���

���
����

���
���

��

��
���

���
���

���
���

���

a0 a1 a2 a3 a4 a5 a6 a7

â0 â1 â2 â3 â4 â5 â6 â7

−1 −1 −1 −1

−1 −1 −1 −1

−1 −1 −1 −1

Figure 2.1: La FHT sur 8 points



2.2. ORDER ONE REED MULLER CODES 21

Using Hadamard transform for decoding

Let f be the received word, f is a function from {0, 1}m into {0, 1}. Let φ
the function from {0, 1}m into C defined by

φ(u) = (−1)f(u).

We have

φ̂(u) =
∑

v

(−1)f(v)(−1)<u,v>,

φ̂(u) =
∑

v

(−1)f(v)+<u,v>.

Hence φ̂(u) is the number of 0 minus the number of 1 in the binary vector

f +
m∑

i=1

uiXi,

so that,

φ̂(u) = 2m − 2dist(f,
m∑

i=1

uiXi),

and

dist(f,
m∑

i=1

uiXi) =
1

2
(2m − φ̂(u)).

In an analogous way we obtain also

dist(f, 1 +
m∑

i=1

uiXi) =
1

2
(2m + φ̂(u)).

As a consequence we have the following decoding algorithm.

Compute φ̂(u) for all u (that is compute the Hadamard transform).

Choose u such that |φ̂(u)| is maximum.

If φ̂(u) ≥ 0 the closest codeword from f is
∑m

i=1 uiXi.

If φ̂(u) < 0 the closest word from f is 1 +
∑m

i=1 uiXi.



22 Chapter 2

An example

Let m = 3. The received word is f = (0, 1, 1, 1, 0, 1, 1, 0). So we compute
φ = (1,−1,−1,−1, 1,−1,−1, 1). The Hadamard transform is performed in 3
stages:

1 −1 −1 −1 1 −1 −1 1
0 2 −2 0 0 2 0 −2
−2 2 2 2 0 0 0 4
−2 2 2 6 −2 2 2 −2

then the maximum is 6 with position’s index 3 = (1, 1, 0) (the first index is
0 = (0, 0, 0) ). The raw word is (0, 1, 1, 0) (f = x1 + x2).

2.3 Reed Solomon codes

2.3.1 Definition

Let Fq be the finite field with q = 2m elements and α a primitive element.
We set n = q − 1. If k < n we define

g(X) = (X − α)(X − α2) · · · (X − αn−k).

Now, the polynomial spaces will be endowed with the usual monomial basis.
A polynomial is given by its polynomial writing or by the sequence of its
coefficients.
Let F be the n dimensional space of polynomials s with degree≤ n− 1 and
with coefficients in Fq. The code C is the subspace of F of all multiples of
g(X).

The polynomial g(X) is of degree n−k. We consider C the space of multiples
of g(X) with degree ≤ n − 1. This space is isomorphic to the space of
polynomial with degree ≤ (n− 1)− (n− k) = k − 1. Hence, the dimension
of C is k.

2.3.2 A systematic encoder for C

Let E the space of polynomials of degree ≤ k − 1 and coefficients in Fq.
To such a polynomial u(X) = (u0, u1, · · · , uk−1) we associate the polynomial



2.3. REED SOLOMON CODES 23

a(X) = (a0, a1, · · · , an−1) defined by

a(X) = r(X) +Xn−ku(X)

where−r(X) (= r(X)) is the remainder of the euclidian division ofXn−ku(X)
by g(X).

The euclidian division ofXn−ku(X) by g(X) gives usXn−ku(X) = v(X)g(X)+
r(X). So, a(X) = v(X)g(X) , that is a multiple of g(X). The application
which maps u(X) on a(X) is an injective linear map from the space of degree
≤ k − 1 polynomials onto C.

The generator matrix begins by a block which is the unity matrix of order
k. The encoder is systematic.

2.3.3 Another encoder for C

Let u(X) = (u0, u1, · · · , uk−1) a raw message. We set uk = uk+1 = · · · =
un−1 = 0 et U = (u0, u1, · · · , un−1). Let a(X) = (a0, a1, · · · , an−1) be the
sequence having U for Mattson transform. So,

uj = âj =
n−1∑
i=0

aiα
−ij = a(α−j) 0 ≤ j ≤ n− 1

ai =
n−1∑
j=0

ujα
ij =

k−1∑
j=0

ujα
ij = u(αi) 0 ≤ i ≤ n− 1

Then the values ai are the values of the polynomial u(X) =
∑k−1

j=0 uiX
j at

the points αi.

The inverse Mattson Solomon transform shows that the ui are the values
taken by a(X) at the points αn−i. But uk = uk+1 = · · · = un−1 = 0, so, a(X)
is 0 at the points α, α2, · · · , αn−k. Then a(X) is a multiple of g(X). It is
easy now to show that the map which transformes u(x) in a(X) is a linear
bijection from the space of polynomials with degree ≤ k − 1 onto C.

Let us compute the minimal distance of C. We know that ai = u(αi). So
each nul ai comes from a root of u(X). But the degree of u(X) is ≤ k − 1,
so that the number of coefficients ai which are zero is at most k − 1. Then
d ≥ n − k + 1. Using the Singleton bound Singleton (d ≤ n − k + 1) we
conclude that d = n− k + 1.



24 Chapter 2

2.3.4 Decoding

Decoding Reed-Solomon codes was not so easy than decoding Reed-Muller
codes. But Reed-Solomon codes are better and very interesting to encode
compressed files. The better decoding algorithm was known as the Berlekamp
Massey algorithm. But we dispose now of a new fine algorithm: Sudan
algorithm. Reed-Solomon codes are often used in CIRC (cross-interleaved
Reed-Solomon code) mode. Decoding such two cascaded codes is easier and
faster.



Chapter 3

Families of codes

3.1 Codes domain

Let δ = d
n

be the relative distance of a code and R = k
n

its rate. So to
each code we can associate a point in the plane (δ, R). The Singleton bound
determines a part of the plane where is situated the point (δ, R):
in the square (0, 0), (1, 0), (1, 1), (0, 1), under the line δ +R = 1 + 1

n
.

Let (Ci)i>0 be a family of [ni, ki, di]-codes. We say that it is a good family
if

limni = +∞,

lim
ki

ni

> 0,

lim
di

ni

> 0.

Let us denote by Uq the set of (a, b) ∈ [0, 1]2 such that it exists a sequence
(Ci)i of [ni, ki, di]-codes with

limni = +∞,

lim
ki

ni

= a,

lim
di

ni

= b.

25



26

3.2 Bounds

Theorem 3.2.1 (Manin) It exists a continuous function αq from [0, 1] into
[0, 1] such that

Uq = {(x, y) ∈ [0, 1]2 | y ≤ αq(x)}.

Moreover

αq(x) ≤ sup(1− 1

q
x, 0).

The Manin function is not explicitely known and the regularity of the function
is not known (just the continuity).

The Varshamov-Gilbert bound is a lower bound for this function.

Theorem 3.2.2 For all x ∈ [0, q−1
q

], we have

αq ≥ βq

where

βq(x) = 1− xlogq(q − 1) + xlogq(x) + (1− x)logq(1− x) if x 6= 0,

βq(0) = 1.

Remark: βq(
q−1

q
) = 0.

Reed-Muller codes are not good families of codes because lim ki

ni
= 0.

Reed-Solomon codes are not good families of codes because ni is bounded by
q and cannot grows to infinity.

So the problem is now to built good families of codes with a very good limit
point that is a limit point which is between the Manin function and the
Varshamov-Gilbert function. This problem has been solved by some families
of algebraic geometric codes (Tsfasman-Vladut-Zink and also Ihara).


