ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES
(VERSION 2)
R. Rolland
Institut de Mathématiques de Luminy, Campus de Luminy, Case 907, 13288 MARSEILLE Cedex 9.
E-mail: robert.roland@acrypta.fr
Url: http://robert.roland.acrypta.com

15 décembre 2011
ÉQUATIONS DIFFÉRENTIELLES
ORDINAIRE
(VERSION 2)

Robert Rolland
TABLE DES MATIÈRES

Avertissement ... 1

1. La présentation des équations différentielles 3
 1.1. Position du problème ... 3
 1.1.1. Énoncé du problème .. 3
 1.1.2. Interprétation géométrique 4
 1.1.3. Les systèmes autonomes 7
 1.1.4. Les conditions initiales - Notion de flot 11
 1.2. Le problème local et le problème global 12
 1.2.1. Solutions maximales 12
 1.2.2. Points d’unicité 12
 1.2.3. Que se passe-t-il sur les bords? 13

2. Les théorèmes généraux ... 17
 2.1. La méthode des approximations successives 17
 2.1.1. Le théorème du point fixe 17
 2.2. La méthode de Cauchy 23
 2.2.1. Le théorème d’Ascoli 23
 2.2.2. La méthode de Cauchy 23
 2.2.3. Réflexion sur la méthode de Cauchy 23
 2.3. Variation d’une intégrale en fonctions des données ... 30
 2.3.1. Famille à un paramètre 30
 2.3.2. Dépendance par rapport à la valeur initiale 31
 2.3.3. Comparaison de solutions approchées 31
 2.3.4. Un exemple ... 33
3. Les Équations linéaires

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. Introduction</td>
<td>45</td>
</tr>
<tr>
<td>3.2. Les équations linéaires à coefficients constants</td>
<td>47</td>
</tr>
<tr>
<td>3.2.1. Les équations sans second membre</td>
<td>47</td>
</tr>
<tr>
<td>3.2.2. Équations linéaires à coefficients constants avec second membre</td>
<td>54</td>
</tr>
<tr>
<td>3.2.3. Le cas d’une équation d’ordre n</td>
<td>55</td>
</tr>
<tr>
<td>3.3. Les équations linéaires à coefficients variables</td>
<td>56</td>
</tr>
</tbody>
</table>

4. Analyse numérique des équations différentielles

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. Introduction</td>
<td>59</td>
</tr>
<tr>
<td>4.1.1. Position du problème</td>
<td>59</td>
</tr>
<tr>
<td>4.1.2. Notations</td>
<td>60</td>
</tr>
<tr>
<td>4.2. Généralités sur les méthodes</td>
<td>60</td>
</tr>
<tr>
<td>4.2.1. Méthode de la tangente d’Euler</td>
<td>60</td>
</tr>
<tr>
<td>4.2.2. Méthode d’Euler modifiée</td>
<td>62</td>
</tr>
<tr>
<td>4.2.3. Généralisation</td>
<td>63</td>
</tr>
<tr>
<td>4.2.4. Les méthodes de Runge-Kutta</td>
<td>67</td>
</tr>
</tbody>
</table>
AVERTISSEMENT

Le texte qui suit constitue le support d’un cours que j’ai préparé pour les étudiants de l’Université de la Polynésie Française. Il s’agit d’un cours élémentaire sur les équations différentielles.

J’ai préparé ce cours principalement à l’aide des livres suivants :
 C’est mon livre d’enseignement préféré sur la question. À mon avis, si les étudiants ne doivent lire qu’un livre sur les équations différentielles, c’est celui-ci.
- Vladimir Arnold, Équations différentielles ordinaires, Mir, 1974.
- Kôsaku Yosida, Équations différentielles et intégrales, Dunod 1971.
CHAPITRE 1

LA PRÉSENTATION DES ÉQUATIONS DIFFÉRENTIELLES

1.1. Position du problème

Dans ce chapitre, nous allons présenter les problèmes analytiques et géométriques liés aux équation différentielles dans le cadre des fonctions d’une variable réelle à valeurs dans un espace vectoriel réel E_n de dimension finie n. Nous nous intéresserons aux équations différentielles du premier ordre.

1.1.1. Énoncé du problème. — Soit Ω un ouvert non vide de $\mathbb{R} \times E_n$ et f une fonction de Ω dans E_n :

$$ f : \Omega \longrightarrow E_n $$

$$(t, x) \mapsto f(t, x) $$

Définition 1.1.1. — On appelle solution de l’équation différentielle :

(1) \[\frac{dx}{dt} = f(t, x), \]

toute fonction ϕ définie sur un intervalle ouvert non vide I de \mathbb{R}, à valeurs dans E_n telle que :

a) ϕ est dérivable sur I,

b) pour tout réel $t \in I$, le couple $(t, \phi(t))$ appartient à Ω et :

$$ \frac{d\phi(t)}{dt} = f(t, \phi(t)). $$

Définition 1.1.2. — On appelle problème de Cauchy pour l’équation différentielle (1) la recherche des solutions ϕ, de cette équation, qui
vérifient une condition initiale donnée :
\[\phi(t_0) = x_0, \]
où \((t_0, x_0)\) est un point fixé dans \(\Omega\).

1.1.2. Interprétation géométrique. — Pour bien comprendre l’interprétation géométrique qui suit, plaçons nous dans le cas où \(n = 1\), c’est-à-dire le cas des fonctions à valeurs réelles.

Définition 1.1.3. — Un élément de contact de \(\mathbb{R}^2\) est un couple \((m, \delta)\) où \(m\) est un point de \(\mathbb{R}^2\) et \(\delta\) une droite du plan \(\mathbb{R}^2\) passant par \(m\). On notera \(C\) l’ensemble des éléments de contact de \(\mathbb{R}^2\).

Définition 1.1.4. — Soit \(\Omega\) un ouvert de \(\mathbb{R}^2\). On appelle champ de contact une application \(\mathcal{E}\) de \(\Omega\) dans l’ensemble \(C\) des éléments de contact de \(\mathbb{R}^2\):

\[
\mathcal{E} : \Omega \rightarrow C \quad m \mapsto \mathcal{E}(m) = (m, \delta)
\]

À l’équation (1) on associe naturellement un champ de contact en posant :

\[\mathcal{E}(m) = (m, \delta), \]

où \(\delta\) est la droite passant par \(m = (t, x)\) et de coefficient directeur \(f(t, x)\). Il est alors visible que grâce à cette correspondance, se donner une équation différentielle :

\[
\frac{dx}{dt} = f(t, x),
\]

où la fonction \(f\) est définie sur \(\Omega\), équivalant à se donner un champ de contact \(\mathcal{E}\) défini sur \(\Omega\), tel que pour tout point \(m \in \Omega\), la droite de l’élément de contact \(\mathcal{E}(m)\) ne soit pas parallèle à l’axe des ordonnées \(Ox\).

Dire qu’un arc \(\gamma\), d’équation \(x = \phi(t)\) et d’image \(\Gamma \subset \Omega\), est solution de l’équation différentielle (1), c’est dire qu’en tout point \(m\) de \(\Gamma\), l’arc possède une tangente \(T\), et que \((m, T) = \mathcal{E}(m)\), où \(\mathcal{E}\) est le champ de contact associé à l’équation (1).

Définition 1.1.5. — Un tel arc \(\gamma\) est appelé un arc intégral (ou courbe intégrale).
1.1. POSITION DU PROBLÈME

On dispose bien sûr d'une interprétation tout à fait analogue dans le cadre des fonctions à valeurs dans E_n.

![Figure 1. Champ des tangentes de $x'=x$](image)

Exemple 1.1.6. — La figure 1 montre le champ de contact de l'équation différentielle $x' = x$. Deux courbes intégrales sont tracées.
Exemple 1.1.7. — Dans cet exemple qui se réfère à la figure 2 on regarde le champ de contact de l’équation différentielle $x' = \sin(tx)$. Les courbes isoclines sont des morceaux d’hyperboles $tx = C$.

Exemple 1.1.8. — L’exemple décrit par la figure 3 correspond à une courbe intégrale du système :

\[
\begin{align*}
\frac{dx_1}{dt} &= x_2 \\
\frac{dx_2}{dt} &= -x_1.
\end{align*}
\]
Nous sommes donc dans le cas où \(n = 2 \), \(x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \) et \(f(t, x) = \begin{pmatrix} x_2 \\ -x_1 \end{pmatrix} \). On remarque que la fonction \(f \) dans ce cas ne dépend pas de la variable \(t \). On dit dans une telle situation que le système est autonome.

À la lumière de l’interprétation géométrique précédente, on pourrait chercher, étant donné un champ de contact, les « courbes » tangentes à ce champ (lignes de champ). Ce problème est plus général que celui que nous avons posé puisqu’on permet aux droites qui interviennent dans les éléments de contact d’être éventuellement « verticales », c’est-à-dire parallèles à \(\mathbb{E}_n \). Nous allons voir les liens de ce problème avec l’interprétation géométrique suivante.

1.1.3. Les systèmes autonomes.

On s’intéresse aux équations du type :

\[
\frac{dx}{dt} = f(x),
\]
où la fonction f qui intervient dans le second membre est indépendante de t.

Soit $\phi : I \rightarrow \mathbb{E}_n$ une solution de l’équation (3). L’image $\phi(I) \subset \mathbb{E}_n$ est appelée une trajectoire de l’équation différentielle. Plus précisément, c’est la trajectoire de la solution ϕ.

Il ne faut pas confondre « trajectoire » et « courbe intégrale ». Une trajectoire est dans l’espace \mathbb{E}_n, tandis qu’une courbe intégrale est dans $I \times \mathbb{E}_n$.

L’interprétation cinématique est très importante : les courbes intégrales permettent de comprendre comment la trajectoire est parcourue en fonction du temps t.

Soit $s \in I$, et $x_s = \phi(s)$ où la fonction ϕ définie sur I est une solution de l’équation (3). La trajectoire $\phi(I)$ passe par le point x_s et en ce point, le vecteur $f(x_s)$ est tangent à la trajectoire.

1.1.3.1. Un exemple détaillé. — Regardons en détail l’exemple suivant où $\mathbb{E}_n = \mathbb{R}^2$:

\[
\begin{align*}
\frac{dx_1}{dt} &= x_2, \\
\frac{dx_2}{dt} &= x_1.
\end{align*}
\]

La solution générale de ce système linéaire est définie pour tout $t \in \mathbb{R}$ et donnée par :

\[
\begin{align*}
x_1 &= a \cosh(t) + b \sinh(t) \\
x_2 &= b \cosh(t) + a \sinh(t).
\end{align*}
\]

où a et b sont des constantes réelles qui dépendent des conditions initiales.

Les trajectoires vérifient donc :

\[x_1^2 - x_2^2 = a^2 - b^2,
\]

ce sont, sauf cas particuliers à étudier, des morceaux d’hyperboles.

Précisons la trajectoire dans les différents cas :
1.1. Position du problème

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a = 0, b = 0$</td>
<td>le point $O = (0, 0)$ (position d'équilibre)</td>
</tr>
<tr>
<td>$a > 0, a = b$</td>
<td>la demi droite ouverte $x_1 = x_2, x_1 > 0$</td>
</tr>
<tr>
<td>$a < 0, a = b$</td>
<td>la demi droite ouverte $x_1 = x_2, x_1 < 0$</td>
</tr>
<tr>
<td>$a > 0, a = -b$</td>
<td>la demi droite ouverte $x_1 = -x_2, x_1 > 0$</td>
</tr>
<tr>
<td>$a < 0, a = -b$</td>
<td>la demi droite ouverte $x_1 = -x_2, x_1 < 0$</td>
</tr>
<tr>
<td>$a ></td>
<td>b</td>
</tr>
<tr>
<td>$a < -</td>
<td>b</td>
</tr>
<tr>
<td>$b ></td>
<td>a</td>
</tr>
<tr>
<td>$b < -</td>
<td>a</td>
</tr>
</tbody>
</table>

Figure 4. Trajectoires hyperboliques

On peut voir sur la figure 4 des exemples de trajectoires, ainsi que le sens dans lequel elles sont parcourues.
Remarquons enfin que toute équation (1) peut être interprétée comme un système autonome. Pour cela écrivons le système (1) en introduisant les coordonnées :

\[
\begin{align*}
\frac{dx_1}{dt} &= f_1(t, x_1, x_2, \cdots, x_n) \\
\frac{dx_2}{dt} &= f_2(t, x_1, x_2, \cdots, x_n) \\
\vdots \\
\frac{dx_n}{dt} &= f_n(t, x_1, x_2, \cdots, x_n)
\end{align*}
\]

et associons lui le système ayant une variable de plus :

\[
\begin{align*}
\frac{dx_1}{dt} &= f_1(x_{n+1}, x_1, x_2, \cdots, x_n) \\
\frac{dx_2}{dt} &= f_2(x_{n+1}, x_1, x_2, \cdots, x_n) \\
\vdots \\
\frac{dx_n}{dt} &= f_n(x_{n+1}, x_1, x_2, \cdots, x_n) \\
\frac{dx_{n+1}}{dt} &= 1.
\end{align*}
\]

Le système (6) soumis à la condition initiale \(\phi(t_0) = X_0\) est visiblement équivalent au système (7) soumis à la condition initiale \(\Phi(t_0) = (X_0, t_0)\). Ce dernier système est autonome.

Remarquons alors que les trajectoires du système autonome (7) sont les courbes géométriques intégrales de (6).

Les équations autonomes jouent donc un rôle important. D’ailleurs, de nombreuses équations issues de la physique et de la mécanique, donnent directement des systèmes autonomes. Se donner un système autonome de type (3) revient à se donner un champ de vecteurs \(x \mapsto f(x)\) dans \(E_n\).
1.1. Position du problème

Remarquons que s'il existe un point \(x_s \) tel que \(f(x_s) = 0 \), alors l'application constante \(\phi : t \mapsto x_s \) est une solution et donc son image, c'est-à-dire le point \(x_0 \) est une trajectoire particulière. On dit que c'est un point d'équilibre.

1.1.4. Les conditions initiales - Notion de flot. — L'espace \(E_n \) introduit dans les paragraphes précédent est appelé l'espace des phases. Le produit cartésien \(\mathbb{R} \times E_n \) est l'espace des phases élargi. La notion de flot prend en compte un aspect cinématique de la théorie. À l'instant \(t_0 \) initial on se trouve en un point \(x_0 \in E_n \) et à l'instant \(t \) on se trouve en un point \(g_t(x_0) \) qui dépend du point initial et du temps. Pour voir la correspondance avec les notations précédentes on pourra dire que \(x_0 = \phi(t_0) \) et que dans ces conditions \(g_t(x_0) = \phi(t) \). Cette façon de voir met l'accent sur deux paramètres : la position initiale et le temps écoulé.

Définition 1.1.9. — On appelle flot différentiable sur \(E_n \) une application \(g \) de \(\mathbb{R} \times E_n \) dans \(E_n \) :

\[
g : \mathbb{R} \times E_n \longrightarrow E_n \\
(t, x_0) \mapsto g_t(x_0),
\]

telle que :

a) \(g \) est une application différentiable,

b) pour tout \(t \in \mathbb{R} \), \(g_t \) est un difféomorphisme de \(E_n \) sur lui même,

c) la famille \((g_t)_{t \in \mathbb{R}} \) est un groupe à un paramètre de transformations de \(E_n \), c'est-à-dire que \(g_0 = \text{Id} \) et que \(g_{t+s} = g_t \circ g_s \).

Dans la suite on prend \(t_0 = 0 \). Notons :

\[
v(x) = \frac{dg_t(x)}{dt}(0).
\]

On obtient ainsi le champ des vitesses du flot.

Comme on vient de le voir, la notion de flot met l'accent sur les trajectoires et la façon dont celles-ci sont parcourues. En particulier, la vitesse du « mobile » sur sa trajectoire joue un rôle important. Plus précisément, si on se donne un champ de vecteurs, existe-t-il un flot dont c'est le champ des vitesses ? C'est le problème fondamental des équations différentielles autonomes.
1.2. Le problème local et le problème global

Soit \(\phi : I \mapsto E_n \) une solution de l'équation :

\[
\frac{dx}{dt} = f(t, x).
\]

(8)

1.2.1. Solutions maximales. — Soit \(J \) un intervalle inclus dans \(I \). Alors la fonction \(\phi_{|J} \), restriction de la fonction \(\phi \) à l'intervalle \(J \) est aussi une solution de (8).

Soient \(\phi_1 : I_1 \to E_n \) et \(\phi_2 : I_2 \to E_n \) deux solutions de (8). Nous dirons que \(\phi_1 \prec \phi_2 \) si \(I_1 \subset I_2 \) et \(\phi_{2|I_1} = \phi_1 \).

La relation \(\prec \) est clairement une relation d'ordre, qui n'est pas totale sur l'ensemble \(S \) des solutions de (8). On voit tout de suite que si \(S \neq \emptyset \), alors muni de cette relation d'ordre, \(S \) est inductif et possède donc un élément maximal. Toute solution de (8) se prolonge donc en une solution maximale.

1.2.2. Points d’unicité. —
Définition 1.2.1. — Soit $m_0 = (t_0, x_0)$ un point de Ω. On dit que m_0 est un point d’unicité globale de l’équation (8) s’il existe une solution maximale et une seule de l’équation (8) passant par m_0.

Définition 1.2.2. — On dit que m_0 est un point d’unicité locale de l’équation (8) s’il existe un voisinage V de m_0 tel que m_0 soit point d’unicité globale pour la restriction à V de l’équation (8).

Théorème 1.2.3. — Si ϕ_0 est une solution maximale de (8) et si tout point $(t, \phi_0(t))$ est point d’unicité locale de (8), alors, tout point $(t, \phi_0(t))$ est aussi point d’unicité globale de (8).

Démonstration. — Soit I_0 l’intervalle de définition de ϕ_0. Supposons qu’il existe une autre solution maximale ϕ_1 de (8), définie sur I_1. Supposons qu’il existe un élément $t \in I_0 \cap I_1$ tel que $\phi_0(t) = \phi_1(t)$. C’est-à-dire, supposons que les deux solutions passent par un même point $m = (t, \phi_0(t)) = (t, \phi_1(t))$. Soit alors $J = \{u \in I_0 \cap I_1 \mid \phi_0(u) = \phi_1(u)\}$. J est ouvert du fait que tout point $(u, \phi_0(u))$ est point d’unicité locale. Donc si $\phi_0(u) = \phi_1(u)$, cette égalité persiste sur un petit voisinage de u, et donc J est ouvert. Mais comme ϕ_0 et ϕ_1 sont des fonctions continues, J est aussi fermé dans $I_0 \cap I_1$. Comme $I_0 \cap I_1$ est connexe, on peut conclure que $J = I_0 \cap I_1$. En conclusion, $\phi_{|I_0 \cap I_1} = \phi_{|I_0 \cap I_1}$. Ceci nous permet de définir la fonction ϕ de $I_1 \cup I_2$ dans E_n par :

$$\phi(t) = \begin{cases}
\phi_0(t) & \text{si } t \in I_0 \\
\phi_1(t) & \text{si } t \in I_1
\end{cases}$$

Comme ϕ prolonge les solutions maximales ϕ_0 et ϕ_1, on a nécessairement $I_0 \cup I_1 = I_0 = I_1$ et par suite $\phi_0 = \phi_1$.

On déduit immédiatement du théorème précédent le théorème qui suit :

Théorème 1.2.4. — Si tout point de Ω est point d’unicité locale pour (8) alors tout point de Ω est aussi un point d’unicité globale.

1.2.3. Que se passe-t-il sur les bords ? — Notons $\overline{E_n}$ le compactifié d’Alexandrov de E_n. Soit $\phi : I \to \overline{E_n}$ une solution maximale de l’équation (8) dans Ω. Supposons que I possède une extrémité droite $\alpha \in \mathbb{R}$ (resp. gauche).
Définition 1.2.5. — On appelle bout droit (resp. bout gauche) de la solution \(\phi \), l’ensemble des points \((\alpha, x)\), tels que \(x \in E_n \) soit valeur d’adhérence de \(\phi \) au voisinage de \(\alpha \).

Comme \(\phi \) est continue, un bout est une partie compacte de \(\mathbb{R} \times E_n \).

Théorème 1.2.6. — Soient \(\Omega \) un ouvert de \(\mathbb{R} \times E_n \) et

\[
\begin{align*}
 f : \quad \Omega & \longrightarrow E_n \\
 (t, x) & \mapsto f(t, x)
\end{align*}
\]

une fonction continue. On suppose que par tout point de \(\Omega \) passe au moins une solution de l’équation :

\[
(9) \quad \frac{dx}{dt} = f(t, x)
\]

(En fait on verra plus tard que, lorsque \(f \) est continue, ce qui est le cas ici, cette condition est automatiquement réalisée).

Alors, toute solution maximale de (9) a ses bouts dans la frontière \(\mathcal{F}(\Omega) \) de \(\Omega \), considéré comme sous-ensemble de \(\mathbb{R} \times E_n \). En outre, si \(\phi : I \rightarrow E_n \) est une solution maximale de (9) et si sa dérivée \(\phi' \) est bornée lorsque \(t \) tend sur \(I \) vers une extrémité \(\alpha \) de \(I \), alors \(\lim_{t \to \alpha, t \in I} \phi(t) \) existe. Si on note \(\lambda \) cette limite on a : \((\alpha, \lambda) \in \mathcal{F}(\Omega)\).

Démonstration. — Soit \(\phi \) définie sur l’intervalle \(I \) une solution maximale de l’équation. Supposons que \(I =]\beta, \alpha[\) où \(\alpha \in \mathbb{R} \) et \(\beta \in \overline{\mathbb{R}} \). Soit \(x_0 \) une valeur d’adhérence de \(\phi \) au voisinage de \(\alpha \). Par construction, \((\alpha, x_0) \in \overline{\Omega} \). Il nous faut montrer que \((\alpha, x_0) \in \overline{\Omega} \setminus \Omega = \mathcal{F}(\Omega)\).

Si \(x_0 \in \overline{E_n} \setminus E_n \), alors \(x_0 \) est le point à l’infini de \(E_n \) et donc \((\alpha, x_0) \in \mathcal{F}(\Omega)\).
Sinon supposons que \((\alpha, x_0) \in \Omega\). Soit \(K_0 = I_0 \times B_0\) un voisinage compact de \((\alpha, x_0)\) inclus dans \(\Omega\). Posons \(M = \sup_{(t, x) \in K_0} \|f(t, x)\|\). La définition d'une valeur d'adhérence nous permet d'écrire que :

\[
\forall \varepsilon > 0, \forall \eta > 0, \exists t
\]

tel que :

\[
t \in I_0 \cap I, |t - \alpha| \leq \eta, \|\phi(t) - x_0\| \leq \frac{\varepsilon}{2}.
\]

Si deux points \(t\) et \(t'\) sont dans dans \(I_0 \cap I\), d’après l’inégalité des accroissements finis on a :

\[
\|\phi(t) - \phi(t')\| \leq M|t - t'|.
\]

Donc si \(t'\) vérifie \(|t - \alpha| \leq \eta\) on a :

\[
\|\phi(t') - x_0\| \leq \|\phi(t') - \phi(t)\| + \|\phi(t) - x_0\|.
\]
\[
\| \phi(t') - x_0 \| \leq M \eta + \frac{\epsilon}{2}.
\]

En prenant \(\eta = \frac{\epsilon}{2M} \) on a pu réaliser :
\[
\| \phi(t') - x_0 \| \leq \epsilon.
\]
Ceci prouve que :
\[\lim_{t\to\alpha} \phi(t) = x_0.\]
Si on donne à \(\phi \) la valeur de continuité \(\phi(\alpha) = x_0 \) alors on obtient une fonction \(\tilde{\phi} \), définie sur \([\beta, \alpha] \), dérivable à gauche en \(\alpha \) avec pour dérivée \(f(\alpha, x_0) \) (en effet \(\lim_{t\to\alpha} \phi'(t) = \lim_{t\to\alpha} f(t, \phi(t)) = f(\alpha, x_0) \)). Il nous suffit maintenant de raccorder cette solution à la partie droite par rapport à \(\alpha \) d’une solution passant par le point \((\alpha, x_0) \) pour contredire la maximalité de \(\phi \). Donc le point \((\alpha, x_0) \) est bien sur la frontière de \(\Omega \).

L’inégalité des accroissements finis permet de montrer que si \(\phi' \) reste bornée lorsque \(t \to \alpha \) alors la limite \(\lim_{t\to\alpha} \phi(t) \) existe. Si on note \(x_0 \) cette limite, c’est bien entendu le seul point d’adhérence de \(\phi(t) \) au voisinage de \(\alpha \) et il est donc sur la frontière de \(\Omega \).

\textbf{Exemple 1.2.7.} — Prenons comme exemple d’équation :
\[
\frac{dx}{dt} = x^2,
\]
qui est définie sur \(\Omega = \mathbb{R} \times \mathbb{R} \). Cherchons les solutions maximales de cette équation passant par le point \((0, 1) \). Il n’y a qu’une et c’est :
\[
\phi :] - \infty, 1[\to \mathbb{R}
\]
\[
t \to \frac{1}{1 - t}.
\]
Le bout droit de cette solution est le point \((1, \infty) \). Il n’y a pas de bout gauche puisque \(\phi \) n’a pas d’extremité gauche \(\{1 =] - \infty, 1[\}. \)
Remarquons qu’aucune solution maximale n’est définie sur \(\mathbb{R} \) tout entier, et ceci parce que quelle que soit la condition initiale, la solution devient infinie en un temps fini.

En fait, lorsque \(\Omega = \mathbb{R} \times E^n \), sa frontière dans \(\mathbb{R} \times \overline{E}_n \) est \(\mathbb{R} \times \infty \). De ce fait, où bien une solution \(\phi \) n’a pas de bout et donc est définie sur tout \(\mathbb{R} \), ou bien elle devient infinie en un temps fini.
CHAPITRE 2

LES THÉORÈMES GÉNÉRAUX

2.1. La méthode des approximations successives

2.1.1. Le théorème du point fixe. —

Théorème 2.1.1. — Soit \(E \) un espace métrique complet, dont on note \(d \) la distance, et \(f \) une application de \(E \) dans lui-même. On note \(f^n \) l’itérée \(f \circ f \cdots \circ f \) \(n \) fois de l’application \(f \).

Supposons que \(f \) possède les propriétés suivantes :

a) pour tout entier \(n \geq 1 \) il existe un réel strictement positif \(k_n \) tel que pour tout \(x \) et tout \(x' \) éléments de \(E \) on ait :
\[
d(f^n(x), f^n(x')) \leq k_n d(x, x'),
\]

b) la série
\[
\sum_{n \geq 1} k_n
\]
converge.

Alors l’équation \(x = f(x) \) a une solution et une seule dans \(E \).

Démonstration. — Soit \(x_0 \in E \). Définissons successivement :

\[
x_1 = f(x_0), x_2 = f(x_1) = f^2(x_0), \cdots, x_n = f(x_{n-1}) = f^n(x_0).
\]

On a alors :
\[
d(x_n, x_{n+1}) = d(f^n(x_0), f(x_1)) \leq k_n d(x_0, x_1).
\]
On peut majorer alors pour \(m \geq n \):

\[
d(x_n, x_m) \leq \sum_{i=n}^{m-1} d(x_i, x_{i+1}) \leq d(x_0, x_1) \sum_{i=n}^{m-1} k_i.
\]

Or la série de terme général \(k_i \) est convergente, donc la suite de terme général \(x_n \) est une suite de Cauchy. Elle converge dans l'espace complet \(E \). Soit \(x \) la limite de cette suite, comme \(f \) est continue (puisque Lipschitziennne) on en déduit que \(x = f(x) \).

On a montré qu'il existe un point fixe, il faut maintenant montrer que ce point fixe est unique : soit \(y \) un autre point fixe, alors pour tout \(n, \ y = f^n(y) \); on a donc :

\[
d(x, y) = d(f^n(x), f^n(y)) \leq k_n d(x, y).
\]

Pour \(n \) assez grand, \(k_n < 1 \) et donc \(x = y \).

Remarque : un corollaire du théorème du point fixe que nous avons énoncé concerne le cas où \(k_1 < 1 \). On dit alors que l'application \(f \) est contractante. Comme \(k_n \leq k_1^n \), la série de terme général \(k_n \) est donc majorée dans ce cas par la série géométrique convergente de terme général \(k_1^n \) et le théorème s'applique.

Corollaire 2.1.2. — Soit \(E \) un espace métrique complet et \(f \) une application contractante de \(E \) dans lui-même. Alors l'équation \(x = f(x) \) a une solution et une seule dans \(E \).

Ce corollaire simple, qui dans la plupart des livres est présenté comme le théorème du point fixe, n'est hélas pas la meilleure version pour traiter la méthode des approximations successives dans la cas des équations différentielles. En effet, les \(k_n \) qui interviennent alors sont bien plus petits que \(k_1^n \) et on n’a pas intérêt à faire cette majoration trop grossière. En réalité, on gagne à obtenir une majoration plus précise, qui permet une meilleure convergence que celle d'une série géométrique.

2.1.2. La méthode de Picard. — Soit \(E_n \) un espace vectoriel sur \(\mathbb{R} \) de dimension \(n \), \(\Omega \) un ouvert de \(\mathbb{R} \times E_n \) et \(f \) une application continue de \(\Omega \) dans \(E_n \). On se donne une position initiale \((t_0, x_0) \in \Omega \) et on se
propose de résoudre le problème de Cauchy pour l’équation :

\begin{equation}
\frac{dx}{dt} = f(t, x).
\end{equation}

Remarquons que si \(\phi : I \to E_n \) est solution, alors \(\phi \) est dérivable (et de classe \(C^1 \)) et :

\[\phi'(t) = f(t, \phi(t)). \]

Comme \(f \) est continue :

\begin{equation}
\phi(t) = x_0 + \int_0^t f(u, \phi(u))\,du
\end{equation}

Réciproquement, si \(\phi \) est une fonction continue qui vérifie (11) alors \(\phi \) est dérivable et vérifie (10). De plus dans ce cas, \(\phi(t_0) = x_0 \). On a donc transformé le problème en la recherche des solutions continues de l’équation intégrale (11).

Théorème 2.1.3. — Soient \(\Omega \) un ouvert non vide de \(\mathbb{R} \times E_n \), \((t_0, x_0)\) un point de \(\Omega \) et \(f : \Omega \to E_n \) une application continue, lipschitzienne par rapport à \(x \), uniformément en \(t \) dans un voisinage du point \((t_0, x_0)\). Alors il existe une solution de l’équation :

\begin{equation}
\frac{dx}{dt} = f(t, x),
\end{equation}

passant par \((t_0, x_0)\). De plus \((t_0, x_0)\) est point d’unicité locale pour l’équation (12).

Démonstration. — Soit \(V \subset \Omega \) un voisinage compact du point \((t_0, x_0)\) tel que \(f \) soit lipschitzienne par rapport à \(x \), uniformément en \(t \) sur \(V \). Posons :

\[k = \sup_{(t, x_1) \in V, (t, x_2) \in V, x_1 \neq x_2} \frac{\| f(t, x_1) - f(t, x_2) \|}{\| x_1 - x_2 \|} \]

et

\[M = \sup_{(t, x) \in V} \| f(t, x) \|. \]

Soit \(l_0 > 0 \) tel que :

\[[t_0 - l_0, t_0 + l_0] \times \{ x \mid \| x - x_0 \| \leq Ml_0 \} \subset V. \]
Chapitre 2. Les théorèmes généraux

Soit \(A\) le sous ensemble de \(C_{E_n}[t_0 - l_0, t_0 + l_0]\) constitué des fonctions continues sur \([t_0 - l_0, t_0 + l_0]\) dont l'image est dans la boule fermée :

\[
B(x_0, Ml_0) = \{x \mid ||x - x_0|| \leq Ml_0\}.
\]

L'ensemble \(A\) est fermé dans \(C_{E_n}[t_0 - l_0, t_0 + l_0]\) muni de la norme uniforme, c'est donc un espace métrique complet. L'application :

\[
g : A \longrightarrow C_{E_n}[t_0 - l_0, t_0 + l_0] \\
g(\phi) = x_0 + \int_{t_0}^{t} f(u, \phi(u))du
\]
a son image dans \(A\). En effet :

\[
\left| \left| \int_{t_0}^{t} f(u, \phi(u))du \right| \right| \leq Ml_0.
\]

On considère désormais \(g\) comme une application de l'espace métrique complet \(A\) dans lui-même.

\[
\left| \left| g(\phi_1)(t) - g(\phi_2)(t) \right| \right| \leq k \left| \left| \int_{t_0}^{t} [\phi_1(u) - \phi_2(u)]du \right| \right|
\]

\[
\left| \left| g(\phi_1)(t) - g(\phi_2)(t) \right| \right| \leq k(t - t_0) ||\phi_1 - \phi_2||
\]

Puis :

\[
\left| \left| g^2(\phi_1)(t) - g^2(\phi_2)(t) \right| \right| \leq k \left| \left| \int_{t_0}^{t} [g(\phi_1)(u) - g(\phi_2(u))]du \right| \right|
\]

\[
\left| \left| g^2(\phi_1)(t) - g^2(\phi_2)(t) \right| \right| \leq k^2 ||\phi_1 - \phi_2|| \left| \left| \int_{t_0}^{t} u - t_0 du \right| \right|
\]

\[
\left| \left| g^2(\phi_1)(t) - g^2(\phi_2)(t) \right| \right| \leq k^2 \frac{(t - t_0)^2}{2!} ||\phi_1 - \phi_2||
\]

Par récurrence on obtient :

\[
\left| \left| g^n(\phi_1)(t) - g^n(\phi_2)(t) \right| \right| \leq k^n \frac{(t - t_0)^n}{n!} ||\phi_1 - \phi_2||
\]

Maintenant et seulement maintenant on peut majorer \(|t - t_0|\) par \(l_0\) de manière à obtenir :

\[
\left| \left| g^n(\phi_1) - g^n(\phi_2) \right| \right| \leq \frac{(kl_0)^n}{n!} ||\phi_1 - \phi_2||
\]
Puisque la série de terme général $\frac{(kl_0)^n}{n!}$ converge, on peut appliquer le théorème du point fixe, ce qui permet de conclure qu'il existe une unique fonction $\phi \in \mathcal{A}$ telle que $g(\phi) = \phi$, c'est-à-dire vérifiant :

$$\phi(t) = x_0 + \int_{l_0}^t f(u, \phi(u))du.$$

\[\square\]

Remarque importante Les hypothèses du théorème 2.1.3 sont satisfaites lorsque f admet une dérivée partielle par rapport à x continue sur Ω.

Si $\Omega = I \times E_n$ (où I est un intervalle ouvert de \mathbb{R}) et si f est lipschitzienne par rapport à x sur Ω, uniformément en t sur tout compact de I, alors la méthode du point fixe permet de construire une solution définie sur I tout entier. En effet soit $K = [t_0 - \alpha, t_0 + \beta] \subset I$ ($\alpha > 0, \beta > 0$). On définit g, application de l'espace des fonctions continues sur $[t_0 - \alpha, t_0 + \beta]$ à valeurs dans E_n dans lui-même, par :

$$g(\phi)(t) = x_0 + \int_{l_0}^t f(u, \phi(u))du.$$

La démonstration précédente s'applique et nous donne une solution unique ϕ_K définie sur K. On prend alors une suite croissante K_n d'intervalles compacts telle que $\bigcup_n K_n = I$. L'unicité de ϕ sur K nous permet de définir sur I la fonction ϕ de manière cohérente par :

Si $t \in K_n$, $\phi(t) = \phi_K(t)$.

ϕ est solution unique du problème.

Exemple 2.1.4 (Cas des équations linéaires)

Soit A une application de \mathbb{R} dans $\mathcal{L}(E_n)$ qui à tout réel t fait correspondre une matrice $A(t)$ de taille $n \times n$. On suppose A continue, et on étudie l'équation différentielle linéaire :

$$\frac{dx}{dt} = A(t)x.$$

Pour tout compact $K \subset \mathbb{R}$, tout $t \in K$, tout $x_1 \in E_n$ et tout $x_2 \in E_n$ on a :

$$\|A(t)x_1 - A(t)x_2\| = \|A(t)(x_1 - x_2)\| \leq \|A(t)\| \|x_1 - x_2\|;$$
\[||A(t)x_1 - A(t)x_2|| \leq \left(\sup_{t \in K} ||A(t)|| \right) ||x_1 - x_2||. \]

Il existe donc une solution unique \(\phi \) définie sur \(\mathbb{R} \) tout entier telle que \(\phi(t_0) = x_0 \).

En particulier si l’équation est à coefficients constants c’est-à-dire que \(A(t) = M \) ne dépend pas de \(t \), le résultat s’applique.

Exemple 2.1.5 (Contrexemple). — Dans le cas de l’équation :
\[
\frac{dx}{dt} = x^2
\]
il n’existe pas de solutions définies sur \(\mathbb{R} \) tout entier Ceci est à mettre en relation avec le fait que la fonction \(x \mapsto x^2 \) n’est pas lipschitzienne sur \(E_1 = \mathbb{R} \).

Exemple 2.1.6 (Fonction exponentielle). — On étudie l’équation linéaire \(x' = x \) avec la condition initiale \(x(0) = 1 \). On sait, compte tenu des résultats précédents, que la méthode du point fixe va converger vers la solution unique :

\[
\begin{align*}
x_1(t) &= 1 \\
x_2(t) &= 1 + \int_0^t x_1(u)du = 1 + t \\
x_3(t) &= 1 + \int_0^t x_2(u)du = 1 + t + \frac{t^2}{2!} \\
\cdots &\quad \cdots \\
x_n(t) &= 1 + \int_0^t x_{n-1}(u)du = 1 + t + \frac{t^2}{2!} + \cdots + \frac{t^{n-1}}{(n-1)!}
\end{align*}
\]
C’est-à-dire que la solution est \(\phi(t) = e^t \) (on s’en doutait !)

Dans le cas général on peut énoncer aussi quelques propriétés globales.

Théorème 2.1.7. — Soit \(\Omega \) un ouvert non vide de \(\mathbb{R} \times E_n \) et \(f : \Omega \to E_n \) une fonction localement lipschitzienne par rapport à \(x \) uniformément en \(t \) sur \(\Omega \). Alors par tout point de \(\Omega \) passe une solution maximale et unique de l’équation
\[
\frac{dx}{dt} = f(t, x).
\]
Les bouts de cette solution sont dans la frontière de \(\Omega \), où \(\Omega \) est considéré comme sous-ensemble de \(\mathbb{R} \times \overline{E_n} \).

Démonstration. — Le résultat est une conséquence directe des théorèmes 2.1.3 et 1.2.6. □
2.2. LA MÉTHODE DE CAUCHY

2.2.1. LE THÉORÈME D’ASCOLI. — On rappelle ici sans démonstration le théorème d’Ascoli :

Théorème 2.2.1. — Soient E et F deux espaces métriques compacts. Une partie $\mathcal{E} \subset C(E, F)$ a une adhérence compacte pour la topologie de la convergence uniforme sur l’espace $C(E, F)$ des fonctions continues de E dans F, si et seulement si c’est une partie équiconnexe.

2.2.2. LA MÉTHODE DE CAUCHY. — La méthode des approximations successives exige une condition de Lipschitz sur la fonction $f(t, x)$. Nous allons démontrer un théorème d’existence (mais non d’unicité) dans le cas où f est seulement continue. La méthode que nous développons ici démontre de nouveau un théorème d’existence, mais avec des hypothèses plus faibles que pour celui que nous avons donné précédemment. En outre, le principe de la méthode est intéressant, il est basé sur la méthode de la tangente d’Euler, que nous détaillerons dans le paragraphe 4.2.1 du chapitre sur les méthodes numériques. Cette méthode est très intuitive puisqu’elle consiste à construire une solution approchée affine par morceaux, en faisant un parcours dans le champ des tangentes, qui emprunte à chaque étape un petit bout de la tangente au point où on est arrivé au pas précédent.

Comme précédemment E_n est un espace vectoriel sur \mathbb{R} de dimension finie n.

Théorème 2.2.2. — Soit Ω un ouvert de $\mathbb{R} \times E_n$ et f une application continue de Ω dans E_n. Par tout point de Ω il passe au moins une solution maximale de l’équation :

\[
\frac{dx}{dt} = f(t, x)
\]

Les bouts de toute solution maximale sont dans la frontière de Ω considéré comme sous-ensemble de $\mathbb{R} \times E_n$.

Démonstration. — Soit $(t_0, x_0) \in \Omega$, V un voisinage compact, inclus dans Ω, de ce point. Posons :

\[
M = \sup_{(t, x) \in V} \|f(t, x)\|.
\]
Choisissons $l_0 > 0$ de telle sorte que :

$$[t_0 - l_0, t_0 + l_0] \times \{ x \mid \|x - x_0\| \leq Ml_0 \} \subset V.$$

On notera $I_0 = [t_0 - l_0, t_0 + l_0]$ et $B_0 = \{ x \mid \|x - x_0\| \leq Ml_0 \}$.

Fixons $\epsilon > 0$, f étant uniformément continue sur V il existe $\eta = l_0/n > 0$ tel que :

$$|t - t'| \leq \eta \text{ et } \|x - x'\| \leq M\eta \implies \|f(t, x) - f(t', x')\| \leq \epsilon.$$

Définissons la fonction ψ_ϵ sur $[t_0, t_0 + \eta]$ par :

$$\psi_\epsilon(t) = x_0 + f(t, x_0)(t - t_0)$$

et posons :

$$(t_1, x_1) = (t + \eta, x_0 + f(t, x_0)\eta).$$

Puis définissons la fonction ψ_ϵ sur $[t_0 + \eta, t_0 + 2\eta]$ par :

$$\psi_\epsilon(t) = x_1 + f(t_1, x_1)(t - t_1).$$

On définit ainsi de proche en proche la fonction ψ_ϵ sur les intervalles $[t_0, t_0 + \eta]$, $[t_0 + \eta, t_0 + 2\eta]$, jusqu'à $[t_0 + (n-1)\eta, t_0 + l_0]$. Cette fonction est continue, affine par morceaux et son image est dans B_0. Remarquons que $\psi_\epsilon(t) - x_0$ est l’intégrale entre t_0 et t de la fonction en escalier qui
vaut \(f(t_i, x_i) \) sur l'intervalle \([t_i, t_{i+1}]\). Mais si \(t \in [t_i, t_{i+1}] \) alors \(|t - t_i| \leq \eta\) et
\[
\|\psi(t) - x_i\| = |t - t_i| \|f(t_i, x_i)\| \leq M \eta,
\]
donc
\[
\|f(t, x_i) - f(t, \psi(t))\| \leq \epsilon,
\]
et par suite :
\[
\psi(t) = x_0 + \int_{t_0}^{t} f(u, \psi(u))du + \epsilon \int_{t_0}^{t} \lambda(u)du,
\]
avec \(\lambda \) continue et vérifiant \(||\lambda(u)|| \leq 1. \)

D'autre part, la définition de \(\psi \) montre que :
\[
||\psi(t) - \psi(t')|| \leq M|t - t'|.
\]
La famille \((\psi_{\epsilon})_{\epsilon > 0} \) de fonctions de \(C(I_0, B_0) \) est donc équicocontinu. On peut en extraire une sous suite \((\psi_{\epsilon_k})_k \) qui converge uniformément vers une fonction \(\phi \), qui de ce fait est continue. On a alors :
\[
\left\| x_0 + \int_{t_0}^{t} f(u, \phi(u))du - \phi(t) \right\| \leq \left\| \int_{t_0}^{t} f(u, \phi(u))du - \int_{t_0}^{t} f(u, \psi_{\epsilon_k}(u))du \right\| + \left\| x_0 + \int_{t_0}^{t} f(u, \psi_{\epsilon_k}(u))du - \psi_{\epsilon_k}(t) \right\| + ||\psi_{\epsilon_k}(t) - \phi(t)||.
\]
Le deuxième membre de l'inégalité peut être rendu aussi proche de 0 qu'on le veut. Donc
\[
\phi(t) = x_0 + \int_{t_0}^{t} f(u, \phi(u))du,
\]
ce qui montre que \(\phi \) est une solution. Le théorème 1.2.6 permet d'achever complètement la démonstration. \(\Box \)

Remarque : nous avons construit une solution \(\phi \) vérifiant \(\phi(t_0) = x_0 \), définie sur \([t_0 - l_0, t_0 + l_0]\) et à valeurs dans \(\{x \mid \|x - x_0\| \leq Ml_0\} \). Un ensemble de la forme \([t_0 - l_0, t_0 + l_0] \times \{x \mid \|x - x_0\| \leq Ml_0\} \) est parfois appelé un cylindre de sécurité.

Exemple 2.2.3. — Voici un exemple où il n'y a pas unicité de la solution. Considérons l'équation \(x' = 3x^{2/3} \). Les fonctions \(\phi(t) = 0 \) et \(\phi(t) = t^3 \) sont deux solutions passant par le point \((0, 0)\).
La méthode de Cauchy, qui s’appuie sur la méthode d’approximation d’Euler, quand les hypothèses suffisantes sont réalisées, peut se terminer par une preuve d’unicité, fournissant ainsi une démonstration alternative complète du théorème 2.1.3.

Démonstration. — Commencons par une démonstration à la main dont l’intérêt est de montrer la force de la méthode des réinjections. On suppose donc que \(f \) vérifie la condition de Lipschitz par rapport à \(x \), uniforme en \(t \):

\[
||f(t, x) - f(t, x')|| \leq k ||x - x'||.
\]

Revenons sur les notations de la démonstration précédente :

\[
\psi_\varepsilon(t) = x_0 + \int_{t_0}^{t} f(u, \psi_\varepsilon(u))du + \epsilon \int_{t_0}^{t} \lambda(u)du,
\]

avec \(\lambda \) continue et vérifiant \(||\lambda(u)|| \leq 1 \). Donc :

\[
\psi_\varepsilon(t) = x_0 + \int_{t_0}^{t} f(u, \psi_\varepsilon(u))du + \epsilon(t - t_0)\mu(t),
\]

avec \(||\mu(t)|| \leq 1 \). Par ailleurs on a construit dans la démonstration précédente une fonction \(\phi \) qui vérifie :

\[
\phi(t) = x_0 + \int_{t_0}^{t} f(u, \phi(u))du.
\]

On a donc en faisant jouer le caractère lipschitzien de \(f \), l’inégalité :

\[
||\psi_\varepsilon(t) - \phi(t)|| \leq k \int_{t_0}^{t} ||\psi_\varepsilon(u) - \phi(u)||du + \epsilon l_0,
\]

inégalité qu’on va garder présente à l’esprit afin de la réutiliser pour le processus de réinjection, et qui en première approximation nous donne :

\[
||\psi_\varepsilon(t) - \phi(t)|| \leq k|t - t_0|||\psi_\varepsilon - \phi|| + \epsilon l_0.
\]

En reportant cette dernière estimation sous le signe d’intégration de la première estimation :

\[
||\psi_\varepsilon(t) - \phi(t)|| \leq k^2 \frac{|t - t_0|^2}{2!} ||\psi_\varepsilon - \phi|| + \epsilon l_0(1 + k|t - t_0|).
\]
On voit qu’en réinjectant cette inégalité sous le signe d’intégration puis en itérant le procédé on obtient :

\[
\|\psi_e(t) - \phi(t)\| \leq \frac{k^p \| \frac{t - t_0}{p!} \|^p}{p!} \|\psi_e - \phi\| + \epsilon l_0 \left(1 + k \| \frac{t - t_0}{p!} \|^2 \right) + \cdots
\]

\[
+ \frac{k^{p-1} \| \frac{t - t_0}{p!} \|^{p-1}}{(p-1)!}.
\]

Maintenant en majorant \(|t - t_0| \) par \(l_0 \) (après avoir fini les réinjections) on obtient pour tout entier \(p \) :

\[
\|\psi_e(t) - \phi(t)\| \leq \frac{(k l_0)^p}{p!} \|\psi_e - \phi\| + \epsilon l_0 e^{k l_0}.
\]

En faisant tendre \(p \) vers \(+\infty \) on obtient :

\[
\|\psi_e(t) - \phi(t)\| \leq \epsilon l_0 e^{k l_0},
\]

ce qui prouve le résultat.

\[\square \]

Exemple 2.2.4 (Fonction exponentielle revisitée)

Reprendons l’exemple 2.1.6 de l’équation \(x' = x \) avec la condition initiale \(x(0) = 1 \). Nous avons vu que la solution unique de cette équation est \(x(t) = e^t \). Considérons l’intervalle \([0, t]\) que nous découpons en \(n \) intervalles de longueur \(t/n \). En appliquant la méthode que nous venons d’exposer, nous obtenons la fonction continue sur \([0, t]\), affine sur chacun des intervalles \([kt/n, (k+1)t/n]\) avec pour coefficient directeur \((1 + t/n)^k\).

La valeur de la fonction au point \(t \) est \((1 + t/n)^n\). En faisant tendre \(n \) vers \(+\infty \) on retrouve bien \(e^t \).

2.2.3. Réflexion sur la méthode de Cauchy. — Ainsi on peut dire en conclusion qu’on a donné deux approches possibles pour obtenir la solution du problème de Cauchy pour une équation différentielle du type \(x' = f(t, x) \) lorsque les hypothèses sur \(f \) sont suffisantes. D’une part la méthode des approximations successives dont le succès est basé sur le théorème du point fixe. D’autre part, la méthode très intuitive de Cauchy, basée sur la méthode d’approximation de la tangente d’Euler, dont le succès est basé d’une part sur le théorème d’Ascoli (pour l’existence) et de nouveau une méthode de réinjection d’approximations successives (pour l’unicité), qui dans ce cas conduit au lemme de Gronwall que nous allons spécifier en le remettant dans le contexte de la démonstration précédente,
car il pourra nous servir encore. Pour bien comprendre l’intérêt de ce
leme, reprendons les équations (14) et (15).
\[
\psi_x(t) = x_0 + \int_{t_0}^{t} f(u, \psi_x(u))\,du + \epsilon \int_{t_0}^{t} \lambda(u)\,du,
\]
\[
\phi(t) = x_0 + \int_{t_0}^{t} f(u, \phi(u))\,du.
\]
Elles nous permettent d’écrire (supposons \(t \geq t_0 \) l’autre cas se faisant de
la même façon) :
\[
(16) \quad ||\psi_x(t) - \phi(t)|| \leq k \int_{t_0}^{t} ||\psi_x(u) - \phi(u)||\,du + \epsilon \alpha,
\]
Soit en posant \(w(t) = ||\psi_x(t) - \phi(t)|| \) (\(w(t) \) est alors une fonction \(\geq 0 \))
\[
(17) \quad w(t) \leq k \int_{t_0}^{t} w(u)\,du + \epsilon \alpha,
\]
Le lemme de Gronwall permet lorsqu’on a une inégalité de ce type de
conclure. Nous le démontrerons dans un cadre un peu plus général, utile
à toute une gamme d’approximations

Lemme 2.2.5 (Gronwall). — Soit \(f, g, h \) trois fonctions réelles conti-
ues, d’une variable réelle, définies sur l’intervalle \([t_0, a]\) et \(\geq 0 \) sur cet
intervalle. On suppose que pour \(t \in [t_0, a] \) :
\[
(18) \quad f(t) \leq g(t) + \int_{t_0}^{t} h(u)f(u)\,du.
\]
Alors on a :
\[
(19) \quad f(t) \leq g(t) + \int_{t_0}^{t} \left[g(v)h(v)\exp \left(\int_{v}^{t} h(u)\,du \right) \right]\,dv.
\]
Démonstration. — On pose :
\[
y(t) = \int_{t_0}^{t} h(u)f(u)\,du.
\]
En multipliant les deux membres de l’inégalité (18) donnée en hypothèse,
on obtient l’inégalité :
\[
(20) \quad y'(t) - h(t)y(t) \leq g(t)h(t).
\]
La méthode de la variation de la constante pour une équation différentielle linéaire du premier ordre nous suggère d’introduire la fonction :

$$ z(t) = y(t) \exp \left(- \int_{t_0}^{t} h(u) \, du \right). $$

En calculant la dérivée de $z(t)$ et en utilisant l’inégalité (20) on obtient :

$$ z'(t) \leq g(t) h(t) \exp \left(- \int_{t_0}^{t} h(u) \, du \right), $$

ce qui par intégration des inégalités et en tenant compte du fait que $y(t_0) = z(t_0) = 0$:

$$ z(t) \leq \int_{t_0}^{t} \left[g(v) h(v) \exp \left(- \int_{t_0}^{v} h(u) \, du \right) \right] \, dv. $$

En revenant à la définition de $z(t)$ on obtient :

$$ y(t) \leq \int_{t_0}^{t} \left[g(v) h(v) \exp \left(\int_{v}^{t} h(u) \, du \right) \right] \, dv. $$

L’inégalité annoncée en découle immédiatement.

Le théorème de Gronwall se décline sous plusieurs formes, en particulier le corollaire suivant obtenu en prenant la fonction $g(t)$ constante est intéressant :

Corollaire 2.2.6. — Soit f, h deux fonctions réelles continues, d’une variable réelle, définies sur l’intervalle $[t_0, a]$ et ≥ 0 sur cet intervalle. Soit $K \geq 0$ une constante. On suppose que pour $t \in [t_0, a]$:

$$ f(t) \leq K + \int_{t_0}^{t} h(u) f(u) \, du. $$

Alors on a :

$$ f(t) \leq K \exp \left(\int_{t_0}^{t} h(u) \, du \right). $$

Démonstration. — Le Lemme de Gronwall 2.2.5, nous permet d’écrire :

$$ f(t) \leq K + K \int_{t_0}^{t} \left[h(v) \exp \left(\int_{v}^{t} h(u) \, du \right) \right] \, dv. $$
La partie sous le signe intégrale est la dérivée de la fonction de v :

$$- \exp \left(\int_v^t h(u) \mathrm{d}u \right).$$

Donc :

$$f(t) \leq K + K \left[- \exp \left(\int_v^t h(u) \mathrm{d}u \right) \right]_{t_0}^t,$$

(où la partie entre les deux crochets est à calculer pour $v = t$ et $v = t_0$),

ce qui donne :

$$f(t) \leq K \exp \left(\int_{t_0}^t h(u) \mathrm{d}u \right).$$

\[\square\]

Remarque : Si on applique ce corollaire à l’inégalité

$$w(t) \leq k \int_{t_0}^t w(u) \mathrm{d}u + \epsilon t_0,$$

on obtient :

$$w(t) \leq \epsilon t_0 \exp (k(t - t_0)).$$

Ceci peut se faire aussi pour $t \leq t_0$, ce qui nous donne :

$$w(t) \leq \epsilon t_0 \exp (k|t - t_0|),$$

et en définitive :

$$w(t) \leq \epsilon t_0 \exp (k t_0).$$

Dans le cadre de la démonstration de l’unicité d’une solution d’une équation différentielle, ceci s’exprime par :

$$||\psi_t(t) - \phi(t)|| \leq \epsilon t_0 \exp (k t_0)$$

ce qui redonne exactement l’inégalité qu’on avait obtenue à la main.

2.3. Variation d’une intégrale en fonctions des données

Nous avons en fait plusieurs problèmes différents :

1. on fait varier la fonction f qu’on fait dépendre d’un paramètre,
 c’est-à-dire qu’on va étudier une famille d’équations différentielles
 du type $x' = f_\lambda(t, x)$;
2. on fait varier la valeur $x_0 = \phi(t_0)$;
3. comment se comportent des solutions approchées, lorsque les valeurs initiales diffèrent.

2.3.1. Famille à un paramètre. — Nous allons considérer une famille d’équations différentielles qui dépend d’un paramètre (vectoriel). Soit donc U un ouvert de $\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p$ et $f(t, x, \lambda)$ une fonction continue de U dans \mathbb{R}^n. Ainsi pour chaque valeur de λ, on a une équation différentielle :

$$ (E_\lambda) \quad \frac{dx}{dt} = f(t, x, \lambda), $$

où $(t, x) \in U_\lambda = \{(\tau, \xi) \mid (\tau, \xi, \lambda) \in U\}$. On va fixer quelques hypothèses supplémentaires afin d’assurer l’unicité pour une plage de valeurs λ de la solution $\phi(t, \lambda)$ de l’équation (E_λ), passant par le point (t_0, x_0).

Soit (t_0, x_0, λ_0) un point de U et $V \subset U$ un voisinage compact de (t_0, x_0, λ_0). On pose :

$$ M = \sup_{(t, x, \lambda) \in V} \| f(t, x, \lambda) \|. $$

Soit $l_0 > 0$ et ρ_0 tels que :

$$ W = [t_0 - l_0, t_0 + l_0] \times \{ x \mid \|x - x_0\| \leq Ml_0 \} \times \{ \lambda \mid \|\lambda - \lambda_0\| \leq \rho_0 \} \subset V. $$

Avec ces hypothèses, la méthode Cauchy nous montre que pour tout λ vérifiant $\|\lambda - \lambda_0\| \leq \rho_0$ il existe une solution $\phi(t, \lambda)$ définie pour $t \in [t_0 - l_0, t_0 + l_0]$ et à valeurs dans $\{ x \mid \|x - x_0\| \leq Ml_0 \}$ telle que $\phi(t_0, \lambda) = x_0$.

Si en outre on suppose que f est uniformément lipschitzienne en x sur W, c’est-à-dire qu’il existe une constante positive k telle que :

$$ \| f(t, \lambda_1, \lambda) - f(t, \lambda_2, \lambda) \| \leq k \|x_1 - x_2\|, $$

pour tout couple de points $(t, x_1, \lambda), (t, x_2, \lambda)$ de W, alors on a aussi unicité, pour tout λ, de cette solution. On supposera désormais que toutes ces hypothèses, y compris le caractère lipschitzien, sont satisfaites.

2.3.1.1. Continuité. —

Théorème 2.3.1. Si f est continue sur U et uniformément lipschitzienne en x sur W, la solution $\phi(t, \lambda)$ est continue sur $[t_0 - l_0, t_0 + l_0] \times \{ \lambda \mid \|\lambda - \lambda_0\| \leq \rho_0 \}$.
Démonstration. — Comme toujours on fera les démonstrations en suppo-
sant $t \geq t_0$, l’autre cas se faisant de la même façon.
Il nous faut étudier :

$$||\phi(t_1, \lambda_1) - \phi(t_2, \lambda_2)||.$$

On peut majorer cette expression :

$$||\phi(t_1, \lambda_1) - \phi(t_2, \lambda_2)|| \leq ||\phi(t_1, \lambda_1) - \phi(t_2, \lambda_1)|| + ||\phi(t_2, \lambda_1) - \phi(t_2, \lambda_2)||.$$

Or on a une majoration de la dérivée de ϕ sur tout W :

$$\left\| \frac{\partial \phi(t, \lambda)}{\partial t} \right\| = \|f(t, \phi(t, \lambda), \lambda)\| \leq M,$$

donc, grâce à l’inégalité des accroissements finis :

$$||\phi(t_1, \lambda_1) - \phi(t_2, \lambda_1)|| \leq M|t_1 - t_2|,$$

ce qui donne une majoration uniforme en λ de la première partie du
second membre de l’inégalité.

On sait par ailleurs que :

1. la fonction f est uniformément continue sur le compact W. En
conséquence pour tout $\epsilon > 0$ il existe $\eta > 0$ tel que $||\lambda_1 - \lambda_2|| \leq \eta$
implique :

$$(23) \quad ||f(t, x, \lambda_1) - f(t, x, \lambda_2)|| \leq \epsilon.$$

2. la fonction f est uniformément lipschitzienne en x :

$$||f(t, x_1, \lambda) - f(t, x_2, \lambda)|| \leq k||x_1 - x_2||.$$

Écrivons alors :

$$\left\| \frac{\partial \phi(t, \lambda_1)}{\partial t} - \frac{\partial \phi(t, \lambda_2)}{\partial t} \right\| = \|f(t, \phi(t, \lambda_1), \lambda_1) - f(t, \phi(t, \lambda_2), \lambda_2)\| \leq$$

$$||f(t, \phi(t, \lambda_1), \lambda_1) - f(t, \phi(t, \lambda_1), \lambda_2)|| +$$

$$||f(t, \phi(t, \lambda_1), \lambda_2) - f(t, \phi(t, \lambda_2), \lambda_2)||$$

$$\leq \epsilon + k||\phi(t, \lambda_1) - \phi(t, \lambda_2)||$$

Mais :

$$\phi(t, \lambda_1) - \phi(t, \lambda_2) = \int_{t_0}^{t} \left(\frac{\partial \phi(u, \lambda_1)}{\partial u} - \frac{\partial \phi(u, \lambda_2)}{\partial u} \right) du,$$
donc:
\[||\phi(t, \lambda_1) - \phi(t, \lambda_2)|| \leq \epsilon(t - t_0) + k \int_{t_0}^{t} ||\phi(u, \lambda_1) - \phi(u, \lambda_2)|| du.\]

Le lemme de Gronwall appliqué à la fonction:
\[w(t) = ||\phi(t, \lambda_1) - \phi(t, \lambda_2)||,\]
qui vérifie:
\[w(t) \leq \epsilon(t - t_0) + k \int_{t_0}^{t} w(u)du,\]
permet d’écritre:
\[w(t) \leq \frac{\epsilon}{k} (e^{k(t-t_1)} - 1),\]

ce qui nous donne en définitive que pour \(||\lambda_1 - \lambda_2|| \leq \eta \) on a:
\[||\phi(t_1, \lambda_1) - \phi(t_2, \lambda_2)|| \leq M|t_1 - t_2| + \frac{\epsilon}{k} (e^{k\eta} - 1).\]

Ceci montre la continuité cherchée.

Si on impose en outre à \(f \) de vérifier une condition de Lipschitz par rapport à \(\lambda \) on a le résultat suivant:

Théorème 2.3.2. — Si \(f \) est continue sur \(U \), uniformément lipschitzienne en \(x \) sur \(W \) et uniformément \(C \)-lipschitzienne en \(\lambda \) sur \(W \), la solution \(\phi(t, \lambda) \) est continue sur \([t_0 - l_0, t_0 + l_0] \times \{ \lambda \mid ||\lambda - \lambda_0|| \leq \rho_0 \} \) et uniformément lipschitzienne par rapport à \(\lambda \) sur ce même compact. Plus précisément pour tout \((t, \lambda) \in [t_0 - l_0, t_0 + l_0] \times \{ \lambda \mid ||\lambda - \lambda_0|| \leq \rho_0 \} \) on a l’inégalité de Lipschitz:
\[||\phi(t, \lambda_1) - \phi(t, \lambda_2)|| \leq \frac{C||\lambda_1 - \lambda_2||}{k} (e^{k\rho_0} - 1).\]

Démonstration. — Dans la démonstration précédente, on remplace l’inégalité (23) par la suivante:
\[||f(t, x, \lambda_1) - f(t, x, \lambda_2)|| \leq C||\lambda_1 - \lambda_2||.\]
Cela revient à remplacer \(\epsilon \) par \(C||\lambda_1 - \lambda_2|| \) dans les calculs ultérieurs. On arrive donc à:
\[||\phi(t, \lambda_1) - \phi(t, \lambda_2)|| \leq \frac{C||\lambda_1 - \lambda_2||}{k} (e^{k\rho_0} - 1),\]
ce qui donne le résultat.
On peut utiliser la théorie que nous venons de faire sur une famille de fonctions à un paramètre pour regarder ce qu’il se passe dans le cas de deux fonctions proches. Supposons que nous ayons à résoudre une équation différentielle \(x' = u(t, x) \) avec la condition initiale \(x(0) = t_0 \). Supposons maintenant que nous disposions d’une fonction \(v \) proche de \(u \) et que nous résolvions à la place de l’équation donnée, l’équation \(x' = v(t, u) \) avec la même condition initiale \(x(0) = t_0 \). Le problème est alors de savoir dans quelle mesure la solution de cette dernière équation est proche de celle de l’équation donnée.

Précisons les données du problème. Soit \(\Omega \) un ouvert de \(\mathbb{R} \times \mathbb{R}^m \), \(u \) et \(v \) deux fonctions continues sur \(\Omega \) et \((t_0, x_0) \) un point de \(\Omega \). Soit \(V_1 \) un voisinage compact de \((t_0, x_0) \) inclus dans \(\Omega \). Posons

\[
M = \max \left(\sup_{(t,x) \in V_1} u(t, x), \sup_{(t,x) \in V_1} v(t, x) \right).
\]

Soit alors \(l_0 > 0 \) tel que le compact :

\[
W_1 = [t_0 - l_0, t_0 + l_0] \times \left\{ x \mid \| x - x_0 \| \leq M l_0 \right\} \subset V_1.
\]

Considérons la fonction \(f \) définie sur \(U = \Omega \times \mathbb{R} \) par :

\[
f(t, x, \lambda) = \lambda v(t, x) + (1 - \lambda) u(t, x).
\]

On a alors comme conséquence du théorème 2.3.2 :

Théorème 2.3.3. — Si \(u \) et \(v \) sont continues sur \(\Omega \), uniformément \(k \)-lipschitzienne en \(x \) sur \(W_1 \) l’équation \(x' = f(t, x, \lambda) \) a pour tout \(\lambda \in [0, 1] \) une solution unique \(\phi(t, \lambda) \) vérifiant \(\phi(t_0, \lambda) = x_0 \), cette solution est continue sur \([t_0 - l_0, t_0 + l_0] \times [0, 1] \) et uniformément lipschitzienne par rapport à \(\lambda \) sur ce même compact. Plus précisément pour tout \((t, \lambda) \in [t_0 - l_0, t_0 + l_0] \times [0, 1] \) on a l’inégalité de Lipschitz :

\[
\| \phi(t, \lambda_1) - \phi(t, \lambda_2) \| \leq |\lambda_1 - \lambda_2| \sup_{(t,x) \in W_1} \| u(t,x) - v(t,x) \| \frac{1}{k} (e^{k l_0} - 1).
\]

En particulier :

\[
\| \phi(t, 0) - \phi(t, 1) \| \leq \sup_{(t,x) \in W_1} \| u(t,x) - v(t,x) \| \frac{1}{k} (e^{k l_0} - 1).
\]
2.3. VARIATION D'UNE INTÉGRALE EN FONCTIONS DES DONNÉES

Démonstration. — Définissons $U = \Omega \times \mathbb{R}$ et $W = W_1 \times [0, 1]$. On retrouve ainsi les notations du théorème 2.3.2. On vérifie facilement grâce à la forme de la fonction $f(t, x, \lambda)$ et aux hypothèses sur u et v que les hypothèses de ce théorème sont vérifiées. La fonction $f(t, x, \lambda)$ est continue sur U. De plus sur W on a :

$$
||f(t, x_1, \lambda) - f(t, x_2, \lambda)|| \leq \lambda ||v(t, x_1) - v(t, x_2)|| + (1 - \lambda) ||u(t, x_1) - u(t, x_2)||
$$

$$
||f(t, x_1, \lambda) - f(t, x_2, \lambda)|| \leq k ||x_1 - x_2||,
$$

ce qui prouve que f est uniformément lipschitzienne en x sur W. On a aussi :

$$
||f(t, x, \lambda_1) - f(t, x, \lambda_2)|| \leq |\lambda_1 - \lambda_2||u(t, x) - v(t, x)||
$$

$$
\leq |\lambda_1 - \lambda_2| \sup_{(t, x) \in W_1} ||u(t, x) - v(t, x)||,
$$

ce qui prouve que f est uniformément lipschitzienne en λ sur W. L’application du théorème 2.3.2 donne les conclusions attendues avec $C = \sup_{(t, x) \in W_1} ||u(t, x) - v(t, x)||$.

□

Exemple 2.3.4. — Prenons l'exemple de l'équation $x' = \sin(tx)$ avec la condition initiale $x(0) = 0.1$. Ainsi on a $u(t, x) = \sin(tx)$, fonction que nous approchons par $v(t, x) = tx$. Nous étudierons les solutions ϕ et ψ des équations $x' = \sin(tx)$ et $x' = tx$ pour $t \in [-l_0, l_0]$ où $l_0 = 1/2$.

Prenons comme voisinage compact initial $V_1 = [-1/2, 1/2] \times [(2/3) \times 0.1, 4/3 \times 0.1]$. On a alors $M = (2/3) \times 0.1$ et $Ml_0 = (1/3) \times 0.1$. De ce fait on peut prendre $W_1 = V_1$. On trouve immédiatement que $k = 1/2$ et que :

$$
C = \sup_{(t, x) \in W_1} |u(t, x) - v(t, x)| \leq \sup_{(t, x) \in W_1} \left(\frac{|tx|}{6} \right) = \frac{1}{6} \left(\frac{2}{3} \times 0.1 \right)^3.
$$

On en conclut que :

$$
\sup_{t \in [-1/2, 1/2]} |\phi(t) - \psi(t)| \leq \frac{1}{6} \left(\frac{2}{3} \times 0.1 \right)^3 \times 2 \times (e^{1/2} - 1),
$$

$$
\sup_{t \in [-1/2, 1/2]} |\phi(t) - 0.1 e^{t^2}| \leq 2.80 \times 10^{-5}.
$$
2.3.1.2. Dérivabilité. — Nous reprenons les notations du paragraphe précédent ainsi que les hypothèses qui assurent l’existence et la continuité des solutions. On étudie donc de nouveau, mais cette fois-ci du point de vue de la dérivabilité, la famille d’équations différentielles :

\[(E_\lambda) \quad \frac{dx}{dt} = f(t, x, \lambda). \]

Bien entendu, nous serons amenés à rajouter, par rapport au paragraphe précédent, des hypothèses.

Dans un premier temps nous allons supposer que \(\lambda \in \mathbb{R} \), c’est-à-dire que \(p = 1 \).

Introduisons l’équation différentielle \((E_\lambda) \), dite équation différentielle linéarisée de l’équation \((E_\lambda) \). Pour cela écrivons l’équation \((E_\lambda) \) sous la forme d’un système développé :

\[
\begin{align*}
\frac{dx_1}{dt} & = f_1(t, x_1, \ldots, x_m, \lambda) \\
\frac{dx_2}{dt} & = f_2(t, x_1, \ldots, x_m, \lambda) \\
\vdots & = \vdots \\
\frac{dx_m}{dt} & = f_m(t, x_1, \ldots, x_m, \lambda).
\end{align*}
\]

Notons \(\phi(t, \lambda) \) la solution de \((E_\lambda) \) telle que \(\phi(t_0, \lambda) = x_0 \). Considérons le système :

\[
\begin{align*}
\frac{dv_1}{dt} & = g_1(t, v_1, \ldots, v_m, \lambda) \\
\frac{dv_2}{dt} & = g_2(t, v_1, \ldots, v_m, \lambda) \\
\vdots & = \vdots \\
\frac{dv_m}{dt} & = g_m(t, v_1, \ldots, v_m, \lambda),
\end{align*}
\]

où :

\[
g_i(t, v_1, \ldots, v_m, \lambda) = \sum_{j=1}^{m} \frac{\partial f_i}{\partial x_j}(t, \phi(t, \lambda), \lambda)v_j + \frac{\partial f_i}{\partial \lambda}(t, \phi(t, \lambda), \lambda),
\]

qu’on notera de manière vectorielle plus compacte :
\[g(t, v, \lambda) = \sum_{j=1}^{m} \frac{\partial f_i}{\partial x_j}(t, \phi(t, \lambda), \lambda)v_j + \frac{\partial f}{\partial \lambda}(t, \phi(t, \lambda), \lambda). \]

Ce système est linéaire.

On a alors le théorème suivant :

Théorème 2.3.5. — On suppose toutes les fonctions \(f_i \) \((1 \leq i \leq m)\) continues sur \(U \), c'est-à-dire \(f \) continue sur \(U \). On suppose aussi que toutes les dérivées partielles

\[\frac{\partial f_i}{\partial x_j}, \text{ ainsi que } \frac{\partial f_i}{\partial \lambda} \]

existent et sont continues sur \(U \). Alors, \(\phi(t, \lambda) \) est de classe \(C^1 \) sur

\[[t_0 - t_0, t_0 + t_0] \times \{ \lambda \mid \|\lambda - \lambda_0\| \leq \rho_0 \}, \]

et les dérivées partielles secondes suivantes existent et sont continues et égales :

\[\frac{\partial}{\partial \lambda} \frac{\partial \phi}{\partial t} = \frac{\partial}{\partial t} \frac{\partial \phi}{\partial \lambda}. \]

De plus, la dérivée partielle :

\[\frac{\partial \phi}{\partial \lambda}(t, \lambda) \]

est la solution de l'équation linéarisée \((E'_\lambda) \) avec la condition initiale

\[\frac{\partial \phi}{\partial \lambda}(t_0, \lambda) = 0. \]

Démonstration. — Fixons une valeur de \(\lambda_i \) de \(\lambda \) dans cette condition l'équation (le système d'équations) \(E'_\lambda \) admet une solution unique \(u(t) \), telle que \(u(t_0) = 0 \). Nous allons montrer qu'en fait :

\[u(t) = \frac{\partial \phi}{\partial \lambda}(t, \lambda_i). \]

Posons :

\[\theta(t) = \phi(t, \lambda) - \phi(t, \lambda_i) - (\lambda - \lambda_i)u(t). \]

On remarque tout de suite que \(\theta(t_0) = 0 \). On a en dérivant :

\[\theta'(t) = f(t, \phi(t, \lambda), \lambda) - f(t, \phi(t, \lambda_i), \lambda_i) \]

\[- (\lambda - \lambda_i) \left(\sum_{j=1}^{m} \frac{\partial f}{\partial x_j}(t, \phi(t, \lambda_i), \lambda_i)u_j(t) + \frac{\partial f}{\partial \lambda}(t, \phi(t, \lambda_i), \lambda_i) \right). \]
Appliquons le théorème des accroissements finis à \(f(t, \phi(t, \lambda), \lambda) - f(t, \phi(t, \lambda_1), \lambda_1) \):
\[
f(t, \phi(t, \lambda), \lambda) - f(t, \phi(t, \lambda_1), \lambda_1) = \left(\sum_{j=0}^{m} \frac{\partial f}{\partial x_j}(t, c, \nu)(\phi_j(t, \lambda) - \phi_j(t, \lambda_1)) \right) \\
+ (\lambda - \lambda_1) \frac{\partial f}{\partial \lambda}(t, \phi(t, \lambda_1), \lambda_1),
\]
où \((t, c, \nu)\) est un point du segment qui joint le point \((t, \phi(t, \lambda), \lambda)\) au point \((t, \phi(t, \lambda_1), \lambda_1)\).

On peut écrire cette équation de la façon suivante :
\[
f(t, \phi(t, \lambda), \lambda) - f(t, \phi(t, \lambda_1), \lambda_1) = \\
\left(\sum_{j=0}^{m} \frac{\partial f}{\partial x_j}(t, \phi(t, \lambda_1), \lambda_1)(\phi_j(t, \lambda) - \phi_j(t, \lambda_1)) \right) \\
+ (\lambda - \lambda_1) \frac{\partial f}{\partial \lambda}(t, \phi(t, \lambda_1), \lambda_1) + r_1 + r_2,
\]
où :
\[
r_1 = \sum_{j=0}^{m} \left(\frac{\partial f}{\partial x_j}(t, c, \nu) - \frac{\partial f}{\partial x_j}(t, \phi(t, \lambda_1), \lambda_1) \right)(\phi_j(t, \lambda) - \phi_j(t, \lambda_1))
\]
et :
\[
r_2 = (\lambda - \lambda_1) \left(\frac{\partial f}{\partial \lambda}(t, c, \nu) - \frac{\partial f}{\partial \lambda}(t, \phi(t, \lambda_1), \lambda_1) \right).
\]
En reportant cette valeur dans l’équation qui donne \(\theta'(t)\) on obtient :
\[
\theta'(t) = \sum_{j=0}^{m} \frac{\partial f}{\partial x_j}(t, \phi(t, \lambda_1), \lambda_1) \theta_j(t) + r_1 + r_2.
\]
Mais \(\phi\) est uniformément lipschitzienne par rapport à \(\lambda\) (voir paragraphe précédent)
\[
||\phi(t, \lambda) - \phi(t, \lambda_1)|| \leq C|\lambda - \lambda_1|,
\]
et de plus les dérivées partielles intervenant dans les expressions de \(r_1\) et \(r_2\) sont continues. Donc pour tout \(\epsilon > 0\), il existe un \(\delta > 0\) tel que si \(|\lambda - \lambda_1| \leq \epsilon\),
\[
||r_1|| \leq C\epsilon|\lambda - \lambda_1|,
\]
\[
||r_2|| \leq \epsilon|\lambda - \lambda_1|.
\]
On en déduit que :
\[\|r_1 + r_2\| \leq (C + 1)\varepsilon|\lambda - \lambda_1|. \]

On obtient donc :
\[\|\theta(t)\| \leq K \int_{t_0}^{t} \|\theta(\xi)\|d\xi + (C + 1)\varepsilon|\lambda - \lambda_1|(t - t_0), \]

ce qui d'après le lemme de Gronwall donne (on le fait comme d'habitude pour \(t \geq t_0 \), l'autre sens se faisant de la même façon) :
\[\|\theta(t)\| \leq \frac{(C + 1)\varepsilon|\lambda - \lambda_1|}{K}(e^{K(t - t_0)} - 1). \]

Ceci montre que :
\[\|\theta(t)\| = \|\phi(t, \lambda) - \phi(t, \lambda_1) - (\lambda - \lambda_1)u(t)\| = o(|\lambda - \lambda_1|), \]

et prouve que la fonction \(\phi(t, \lambda) \) est dérivable au point \(\lambda_1 \) (qu'on a choisi quelconque) par rapport à \(\lambda \) avec pour dérivée \(u(t) \) :
\[\frac{\partial \phi}{\partial \lambda}(t, \lambda_1) = u(t). \]

\[\square \]

En conclusion :

1. la dérivée partielle
\[\frac{\partial \phi}{\partial t}(t, \lambda) \]

existe et est continue, puisque \(\phi(t, \lambda) \) est solution de la famille à un paramètre de systèmes :
\[\frac{dx}{dt}f(t, x, \lambda), \]

qui par hypothèse vérifie toutes les conditions pour qu'il en soit ainsi. On a bien entendu :
\[\frac{\partial \phi}{\partial t}(t, \lambda) = f(t, \phi(t, \lambda), \lambda). \]

2. la dérivée partielle
\[\frac{\partial \phi}{\partial \lambda}(t, \lambda) \]

existe, c'est ce qu'on vient de montrer, et en outre c'est la solution soumise à la condition initiale : valeur 0 au point \(t_0 \), du système
différentiel E_λ. Si on observe la famille à un paramètre de systèmes E_λ, on voit que les conditions pour affirmer la continuité de la solution $\frac{\partial \phi}{\partial \lambda}(t, \lambda)$ sont réalisées.

3. on conclut que la fonction $\phi(t, \lambda)$ est de classe C^1.

4. de plus, puisque :

$$\frac{\partial \phi}{\partial \lambda}(t, \lambda)$$

est solution de E_λ, on peut écrire successivement :

$$\frac{\partial}{\partial t} \frac{\partial \phi}{\partial \lambda}(t, \lambda) = \sum_{j=1}^{m} \frac{\partial f}{\partial x_j}(t, \phi(t, \lambda), \lambda) \frac{\partial \phi}{\partial \lambda}(t, \lambda) + \frac{\partial f}{\partial \lambda}(t, \phi(t, \lambda), \lambda),$$

$$\frac{\partial}{\partial t} \frac{\partial \phi}{\partial \lambda}(t, \lambda) = \frac{\partial}{\partial \lambda} [f(t, \phi(t, \lambda), \lambda)](t, \lambda),$$

$$\frac{\partial}{\partial \lambda} \frac{\partial \phi}{\partial \lambda}(t, \lambda) = \frac{\partial}{\partial \lambda} \frac{\partial \phi}{\partial \lambda}(t, \lambda).$$

En outre, la première égalité montre que ces deux dérivées partielles égales, sont continues.

Attention, il faut distinguer :

$$\frac{\partial f}{\partial \lambda}(t, \phi(t, \lambda), \lambda)$$

qui est la valeur de la dérivée partielle par rapport à la troisième variable de la fonction de 3 variables $f(t, x, \lambda)$ prise au point $(t, \phi(t, \lambda), \lambda)$ de

$$\frac{\partial}{\partial \lambda} [f(t, \phi(t, \lambda), \lambda)](t, \lambda)$$

qui est la valeur de la dérivée partielle par rapport à la deuxième variable de la fonction composée, de deux variables $f(t, \phi(t, \lambda), \lambda)$, prise au point (t, λ).

Le résultat se généralise facilement au cas où $p > 1$. Il suffit de fixer toutes les composantes de $\lambda = (\lambda_1, \cdots, \lambda_p)$ sauf une, pour avoir le résultat par rapport à chaque λ_k.

On laissera au lecteur le soin de démontrer par récurrence sur q le théorème qui traite le cas de la dérivation q^e.
Théorème 2.3.6. — On suppose toutes les fonctions $f_i \ (1 \leq i \leq m)$ continues sur U, c’est-à-dire f continue sur U. On suppose aussi que toutes les dérivées partielles
\[\frac{\partial f_i}{\partial x_j}, \text{ ainsi que } \frac{\partial f_i}{\partial \lambda} \]
existent et sont de classe C^{n-1} sur U. Alors, $\phi(t, \lambda)$ est de classe C^q sur $[t_0 - \delta_0, t_0 + \delta_0] \times \{ \lambda \mid ||\lambda - \lambda_0|| \leq \rho_0 \}$.

2.3.2. Dépendance par rapport à la valeur initiale. — Cette fois-ci on veut voir comment se comporte la solution lorsque on modifie la condition initiale. On part de l’équation $x' = f(t, x)$ et on note $\phi(t, \mu)$ la solution vérifiant $\phi(t_0, \mu) = \mu$. Posons $\psi(t, \mu) = \phi(t, \mu) - \mu + x_0$. Ainsi on a pour tout μ, $\psi(t_0, \mu) = x_0$. On peut écrire en dérivant par rapport à t :
\[\psi'(t, \mu) = \phi'(t, \mu) = f(t, \psi(t, \mu) + \mu - x_0). \]
Si on définit $F(t, x, \mu) = f(t, x + \mu - x_0)$ on a alors
\[\psi'(t, \mu) = F(t, \psi(t, \mu), \mu). \]
On est donc ramené à l’étude d’une famille d’équation différentielles dépendant d’un paramètre μ. Remarquons que les hypothèses de régularité faites sur la fonction f, compte tenu de la façon dont est définie F, se transportent sur cette dernière fonction. On peut conclure que $\psi(t, \mu)$ est de classe C^q où la valeur de $q \geq 0$ dépend des hypothèses faites sur f.

2.3.3. Comparaison de solutions approchées. — Nous allons considérer deux solutions approchées pour une équation différentielle, sur un même intervalle I, par exemple qui pourraient être obtenues par la méthode d’Euler, avec des conditions initiales qui pourraient différer. Soit $f(t, x)$ une fonction d’un ouvert Ω de $\mathbb{R} \times E$ dans E, continue dans Ω et uniformément lipschitzienne par rapport à x c’est à dire que pour tout t, x_1, x_2 tels que $(t, x_1) \in \Omega$ et $(t, x_2) \in \Omega$ on ait :
\[||f(t, x_1) - f(t, x_2)|| \leq k ||x_1 - x_2||. \]
Soient donc $u_1(t)$ et $u_2(t)$ deux fonctions, solutions approchées, définies et continues sur I de classe C^1 par morceaux et vérifiant :

$$
\|u'_1(t) - f(t, u_1(t))\| \leq \epsilon_1,
$$

$$
\|u'_2(t) - f(t, u_2(t))\| \leq \epsilon_2,
$$

sauf aux points de discontinuité des dérivées, et aussi :

$$
\|u_1(t_0) - u_2(t_0)\| \leq \delta.
$$

Alors pour tout $t \in I$ on a :

$$
\|u_1(t) - u_2(t)\| \leq \delta e^{k|t-t_0|} + \frac{\epsilon_1 + \epsilon_2}{k} (e^{k|t-t_0|} - 1).
$$

Démonstration. — On tire des inégalités de départ et des inégalités triangulaires :

$$
\|u'_1(t) - u'_2(t) - f(t, u_1(t)) + f(t, u_2(t))\| \leq \epsilon_1 + \epsilon_2,
$$

$$
\|u'_1(t) - u'_2(t)\| \leq \|f(t, u_1(t)) - f(t, u_2(t))\| + \epsilon_1 + \epsilon_2.
$$

Puis en utilisant la condition de Lipschitz :

$$
\|u'_2(t) - u'_1(t)\| \leq k\|u_2(t) - u_1(t)\| + \epsilon_1 + \epsilon_2.
$$

Mais :

$$
u_2(t) - u_1(t) - (u_2(t_0) - u_1(t_0)) = \int_{t_0}^{t} (u'_2(s) - u'_1(s))ds,
$$

donc :

$$
\|u_2(t) - u_1(t)\| \leq \|u_2(t_0) - u_1(t_0)\| + k \int_{t_0}^{t} \|u_2(s) - u_1(s)\|ds + (\epsilon_1 + \epsilon_2)|t - t_0|.
$$

En posant :

$$
w(t) = \|u_1(t) - u_2(t)\|,
$$

on obtient :

$$
w(t) \leq w(t_0) + (\epsilon_1 + \epsilon_2) |t - t_0| + k \int_{t_0}^{t} w(s)ds.
$$

Le lemme de Gronwall permet de conclure.

\square
2.3.4. Un exemple. — On va étudier les solutions de la famille d’équation :
\[
\frac{dx}{dt} = \lambda x^2,
\]
qui prend la valeur 1 pour \(t = 0 \). On cherchera ce qu’il se passe sur :
\[
W = [0, 1] \times [1, 2] \times [1/4, 1/2].
\]
Pour tout \(\lambda \in [1/4, 1/2] \) on a une solution unique :
\[
\phi(t, \lambda) = \frac{1}{1 - \lambda t}.
\]
L’équation linéarisée est :
\[
\frac{dv}{dt} = \frac{2\lambda v}{1 - \lambda t} + \frac{1}{(1 - \lambda t)^2}.
\]
On commence par résoudre cette dernière équation sans second membre :
\[
\frac{dv}{dt} = \frac{2\lambda v}{1 - \lambda t},
\]
ce qui donne :
\[
v(t, \lambda) = \frac{C}{(1 - \lambda t)^2}.
\]
On applique alors la méthode de la variation de la constante pour résoudre l’équation complète, en posant :
\[
v(t, \lambda) = \frac{C(t)}{(1 - \lambda t)^2}.
\]
D’où :
\[
C'(t) = 1,
\]
ce qui donne, avec la condition \(v(0, \lambda) = 0 \),
\[
C(t) = t.
\]
En conclusion on a :
\[
v(t, \lambda) = \frac{t}{(1 - \lambda t)^2},
\]
et on constate que c’est bien la dérivée par rapport à \(\lambda \) de \(\phi(t, \lambda) \) :
\[
\frac{\partial}{\partial \lambda} \left[\frac{1}{1 - \lambda t} \right] = \frac{t}{(1 - \lambda t)^2}.
\]
CHAPITRE 3

LES ÉQUATIONS LINÉAIRES

3.1. Introduction

Reprenons la formulation générale du problème des équations différentielles en particularisant les hypothèses de manière adaptée au cas linéaire. Soit n un entier ≥ 1. Soit I un intervalle de \mathbb{R}. Soit $\Omega = I \times \mathbb{R}^n$, où I est un intervalle de \mathbb{R}. Soit f une fonction définie sur Ω par $f : (t, x) \mapsto f(t, x)$, qui pour tout $t \in I$ est telle que la fonction $f_t : x \mapsto f(t, x)$ soit une fonction linéaire de \mathbb{R}^n dans lui-même. Ainsi cette fonction f peut être décrite par une matrice carrée $A(t)$ de taille $n \times n$ à coefficients fonctions de t. On dit alors que l'équation différentielle :

$$\frac{dx}{dt} = A(t).x$$

est linéaire sans second membre. Si plus généralement on a une équation du type :

$$\frac{dx}{dt} = A(t).x + B(t)$$
on dit qu'on a une équation linéaire avec second membre, le second membre étant $B(t)$.

Remarquons qu'entrent dans ce cadre les équations linéaires réelles d'ordre n, que nous allons décrire maintenant.

Notons D l'opérateur de dérivation. Les puissances successives de D sont à interpréter en terme de composition des opérateur. La dérivation seconde sera notée D^2, et ainsi de suite. D^0 est l'identité qui transforme
une fonction en elle-même. Soit \(P(t)(X) \) un polynôme en \(X \), à coefficients fonctions réelles d’une variable réelle \(t \):

\[
P(t)(X) = a_n(t)X^n + a_{n-1}(t)X^{n-1} + \cdots + a_1(t)X + a_0(t).
\]

Quitte à tout diviser par \(a_n(t) \), on supposera dans la suite \(a_n(t) = 1 \). Bien entendu les zéros de \(a_n(t) \) (point singuliers) vont jouer un rôle important puisque \(a_n(t) \) se retrouve en dénominateur. Considérons l’équation :

\[
(26) \quad P(t)(D)(x) = 0.
\]

Résoudre cette équation consiste à trouver les fonctions \(\phi \) définies sur un intervalle de \(\mathbb{R} \) à valeurs dans \(\mathbb{R} \), telles que :

\[
P(t)(D)(\phi)(t) = 0
\]

pour tout \(t \) de \(I \), c’est-à-dire encore :

\[
\phi^{(n)}(t) + a_{n-1}(t)\phi^{(n-1)}(t) + \cdots + a_1(t)\phi'(t) + a_0(t)\phi(t) = 0.
\]

Posons :

\[
u_1 = x, u_2 = x', u_3 = x^{(2)}, \cdots, u_n = x^{(n-1)},
\]

et \(u \) le vecteur ayant \(u_1, u_2, \cdots, u_n \) pour composantes. L’équation (26) est équivalente au système linéaire :

\[
u' = A(t).u,
\]

où

\[
A(t) = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
-a_0(t) & -a_1(t) & -a_2(t) & \cdots & -a_{n-1}(t)
\end{pmatrix}
\]

Prenons l’exemple simple de l’équation d’un circuit électrique RLC,

\[
L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = 0.
\]

Si on note :

\[
i = \frac{dq}{dt}
\]
3.2. **LES ÉQUATIONS LINÉAIRES À COEFFICIENTS CONSTANTS**

alors on a le système :

\[
\begin{align*}
\frac{dq}{dt} &= i \\
\frac{di}{dt} &= -\frac{R}{L}i - \frac{1}{LC}q.
\end{align*}
\]

Autrement dit, en posant :

\[x = \begin{pmatrix} q \\ i \end{pmatrix},\]

on obtient :

\[\frac{dx}{dt} = Ax,\]

avec :

\[A = \begin{pmatrix} 0 & 1 \\ -\frac{1}{LC} & -\frac{R}{L} \end{pmatrix}.
\]

Dans cet exemple les coefficients de la matrice \(A\) sont des constantes. On dit que le système est à coefficients constants. L’équation qu’on vient d’écrire est une équation linéaire à coefficients constants, sans second membre. Si dans le circuit on a un élément actif (générateur) qui fournit une tension \(e(t)\), alors l’équation s’écrit :

\[e(t) = L\frac{dq}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q,
\]

ce qui sur le système s’interprète par :

\[\frac{dx}{dt} = Ax + E(t),\]

où :

\[E(t) = \begin{pmatrix} 0 \\ \frac{e(t)}{L} \end{pmatrix}.
\]

3.2. Les équations linéaires à coefficients constants

3.2.1. Les équations sans second membres.

Nous étudions les équations du type :

\[\frac{dx}{dt} = f(x) = Ax,\]

où \(f\) est une application linéaire de \(\mathbb{R}^m\) dans lui-même, représentée dans une base par la matrice carrée \(A\) d’ordre \(m\). Les théorèmes généraux nous
indiquent que pour tout \(x_0 \in \mathbb{R}^n \) il existe une solution maximale et une seule \(\phi(t, x_0) \) telle que \(\phi(0, x_0) = x_0 \). Cette solution est définie sur tout \(\mathbb{R} \).

Remarquons aussi que si \(\phi(t, x_0) \) et \(\phi(t, y_0) \) sont solutions de l’équation (27) alors :
\[
\alpha \phi(t, x_0) + \beta \phi(t, y_0) = \phi(t, \alpha x_0 + \beta y_0),
\]
est donc aussi solution de (27). Ceci prouve que l’ensemble \(S \) des solutions générales de (27) est un sous-espace vectoriel de l’espace vectoriel des fonctions de \(\mathbb{R} \) dans \(\mathbb{R}^n \).

Soit \(s \) l’application de \(\mathbb{R}^n \) dans \(S \), qui à tout vecteur \(x_0 \) de \(\mathbb{R}^n \) fait correspondre la solution \(\phi(t, x_0) \) qui prend la valeur \(x_0 \) au point \(t = 0 \). Cette application est d’après ce que nous venons de voir une application linéaire bijective. On peut donc énoncer le théorème suivant :

Théorème 3.2.1. — L’ensemble \(S \) des solutions générales de (27) est un sous-espace vectoriel de dimension \(m \) de l’espace vectoriel des fonctions de \(\mathbb{R} \) dans \(\mathbb{R}^n \).

Théorème 3.2.2. — La solution générale de l’équation

\[
\frac{dx}{dt} = Ax,
\]

s’exprime sous la forme :

\[
\phi(t) = e^{tA}V,
\]

où \(V \) est le vecteur, valeur initiale de \(\phi \) au point 0.

Démonstration. — Il suffit de se rappeler que :

\[
e^{tA}V = \left(\sum_{k=0}^{\infty} \frac{t^kA^k}{k!} \right) V,
\]
et la série du second membre est absolument convergente, ainsi que la série obtenue en dérivant terme à terme. La dérivée s’obtient donc en dérivant terme à terme, c’est-à-dire que :

\[
\frac{d}{dt} (e^{tA}V) = A \left(e^{tA}V \right),
\]
ce qui prouve que les fonctions :

\[
\phi(t) = e^{At}V
\]
sont solutions. Comme ces fonctions forment (lorsqu’on fait varier le ve-
ccteur initial \(V \)) un sous-espace vectoriel de dimension \(m \), on a ainsi toutes
les solutions.

Remarquons que si on se donne le vecteur initial \(V \) au point \(t = t_0 \)
alors la solution s’exprime sous la forme :

\[
\phi(t) = e^{(t-t_0)A}V.
\]

Trouver la solution générale de l’équation sans second membre à coe-
cfficients constants revient donc à calculer l’exponentielle \(e^{tA} \)

3.2.1.1. Si la matrice \(A \) est diagonalisable. — Cherchons la solution \(x(t) \)
de l’équation

\[
x' = Ax
\]

qui vaut \(V \) pour \(t = 0 \).

Nous sommes dans le cas où \(A \) est diagonalisable. Notons \(\lambda_1, \lambda_2, \cdots, \lambda_m \)
les valeurs propres de \(A \), éventuellement complexes. Notons \(\Delta \) la matrice
diag\((\lambda_1, \lambda_2, \cdots, \lambda_m)\), et \(P \) la matrice de passage :

\[
\Delta = P^{-1}AP.
\]

Introduisons \(X = P^{-1}x \). Nous cherchons à résoudre :

\[
PX' = APX,
\]
c’est-à-dire :

\[
X' = P^{-1}APX = \Delta X,
\]
avec comme valeur initiale \(P^{-1}V \), pour \(X \). On est donc maintenant ra-
mené à chercher l’exponentielle de \(t\Delta \), ce qui est très simple :

\[
S(t) = e^{t\Delta} = \text{diag}(e^{\lambda_1t}, e^{\lambda_2t}, \cdots, e^{\lambda_m t}).
\]

On obtient donc :

\[
X(t) = S(t)P^{-1}V,
\]

ou encore :

\[
x(t) = PS(t)P^{-1}V.
\]
3.2.1.2. Dans le cas général. — Si la matrice A n’est pas diagonalisable elle se met sous la forme :

$$
J = \begin{pmatrix}
J_1 & 0 & 0 & \cdots & 0 \\
0 & J_2 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & J_r
\end{pmatrix}
$$

où les J_r sont soit des blocks diagonaux, soit des blocs de Jordan. Comme précédemment, si on note P la matrice de passage on obtient de la même façon :

$$
x(t) = PS(t)P^{-1}V,
$$

où :

$$
S(t) = e^{tJ}.
$$

Le problème est donc maintenant de calculer e^{tJ}. Compte tenu de la forme de la matrice J :

$$
e^{tJ} = \begin{pmatrix}
e^{tJ_1} & 0 & 0 & \cdots & 0 \\
0 & e^{tJ_2} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & e^{tJ_r}
\end{pmatrix}.
$$

Comme on sait facilement calculer e^{tJ_k} si J_k est un bloc diagonal, il reste à calculer e^{tJ_k} lorsque J_k est un bloc de Jordan de taille m_k :

$$
J_k = \begin{pmatrix}
\lambda_k & 1 & 0 & \cdots & 0 \\
0 & \lambda_k & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & \lambda_k
\end{pmatrix}.
$$
On a donc :

\[J_k = \lambda_k I + N, \]

avec :

\[
N = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{pmatrix}.
\]

Comme la matrice \(N \) commute avec l'identité \(I \) on peut écrire :

\[
e^{tJ_k} = e^{\lambda_k t} I e^{tN} = e^{\lambda_k t} e^{tN},
\]

\[
e^{tJ_k} = e^{\lambda_k t} e^{tN} = e^{\lambda_k t} e^{tN}.
\]

Mais le calcul des puissances successives de \(N \) nous montre que :

\[
e^{tN} = \begin{pmatrix}
1 & t & t^2/2! & \cdots & t^{m_k-1}/(m_k-1)! \\
0 & 1 & t & \cdots & t^{m_k-2}/(m_k-2)! \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & t \\
0 & 0 & 0 & \cdots & 1
\end{pmatrix}.
\]

Remarque : Dans tous les cas, les colonnes de la matrice \(e^{tA} \) donnent une base de l'espace des solutions.

3.2.1.3. Exemples. —

Exemple 1 : Résoudre le système : \(x' = Ax \) avec

\[
A = \begin{pmatrix}
1 & 1 & 1 \\
2 & 1 & -1 \\
-3 & 2 & 4
\end{pmatrix}.
\]

On jordanise la matrice \(A \) initiale et on obtient :

\[
T = \begin{pmatrix}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{pmatrix},
\]
avec pour matrice de passage :

$$P = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 2 & 0 \\ 1 & -3 & 0 \end{pmatrix}$$

et

$$P^{-1} = \begin{pmatrix} 0 & -3 & -2 \\ 0 & -1 & -1 \\ 1 & -1 & -1 \end{pmatrix}.$$

Si on fait le changement de variables $X = PU$ on a alors à résoudre $PU^t = APU$, ou encore $U^t = P^{-1} APU$, c’est-à-dire $U^t = TU$. On a alors :

$$U = e^{tT} U_0$$

où $U_0 = P^{-1} X_0$ avec X_0 valeur initiale de X. Il faut donc calculer e^{tT}. On trouve :

$$e^{tT} = e^{2t} \begin{pmatrix} 1 & t & t^2 / 2 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix}.$$

On obtient alors :

$$U = e^{tT} U_0,$$

puis

$$X = PU = Pe^{tT} P^{-1} X_0.$$ En particulier les trois colonnes de $Pe^{tT} P^{-1}$ sont des solutions particulières et toute solution est combinaison linéaire de ces trois solutions. On trouve :

$$Pe^{tT} P^{-1} = e^{2t} \begin{pmatrix} 1 - t & t & t \\ 2t - t^2 / 2 & 1 - t + t^2 / 2 & -t + t^2 / 2 \\ -3t + t^2 / 2 & 2t - t^2 / 2 & 1 + 2t - t^2 / 2 \end{pmatrix}.$$

Exemple 2 : Reprenons l’équation du circuit RLC :

$$L \frac{d^2 q}{dt^2} + R \frac{dq}{dt} + \frac{1}{C} q = 0.$$ En notant i la dérivée de q,

$$i = \frac{dq}{dt}.$$
3.2. LES ÉQUATIONS LINÉAIRES À COEFFICIENTS CONSTANTS

on aboutit au système :

\[
\begin{align*}
\frac{dq}{dt} &= i \\
\frac{di}{dt} &= -\frac{R}{L}i - \frac{1}{LC}q,
\end{align*}
\]

qui s’écrit sous forme matricielle :

\[
\frac{dx}{dt} = \begin{pmatrix}
0 & 1 \\
-\frac{1}{LC} & -\frac{R}{L}
\end{pmatrix} x = Ax.
\]

Le polynôme caractéristique de la matrice \(A \) est :

\[
\det(\lambda I - A) = \lambda^2 + \frac{R}{L} \lambda + \frac{1}{LC},
\]

dont le discriminant est :

\[
\frac{R^2}{L^2} \left(1 - \frac{4L}{R^2C}\right).
\]

On a donc 3 cas à examiner :

1. le discriminant est nul, on a alors une racine double

\[
\lambda = -\frac{R}{2L}.
\]

Dans ce cas :

\[
q = e^{\lambda t} (at + b),
\]

\[
i = e^{\lambda t} (\lambda at + \lambda b + a).
\]

Si par exemple on a à l’instant initial \(t = 0 \), \(q = q_0 \) (le condensateur a pour charge \(q_0 \)) et \(i = 0 \) alors :

\[
q = q_0 e^{\lambda t}(1 - \lambda t),
\]

\[
i = -\lambda^2 q_0 e^{\lambda t}.
\]

2. le discriminant est > 0, alors on a deux racines réelles négatives \(\lambda_1 \) et \(\lambda_2 \). Dans ce cas on a :

\[
q = ae^{\lambda_1 t} + be^{\lambda_2 t},
\]

\[
i = \lambda_1 ae^{\lambda_1 t} + \lambda_2 be^{\lambda_2 t}.
\]
3. Le discriminant est < 0, et donc on a deux valeurs propres complexes conjuguées $\lambda_1 = \alpha + i\omega$, $\lambda_2 = \alpha - i\omega$. Dans ce cas on a :
\[
q = e^{\alpha t} (a \cos(\omega t) + b \sin(\omega t)), \quad i = e^{\alpha t} ((\alpha a + b) \cos(\omega t) + (\alpha b - a) \sin(\omega t)).
\]

3.2.2. Équations linéaires à coefficients constants avec second membre. — On étudie maintenant le système :
\[
\frac{dx}{dt} = Ax + B(t),
\]
 où $B(t)$ est une fonction continue. La fonction $f(t, x) = Ax + B(t)$ est donc continue, uniformément lipschitzienne par rapport à x. On est donc dans le cas d’existence et d’unicité d’une solution maximale pour chaque valeur initiale.

Si on a deux solutions de cette équation, leur différence est une solution de l’équation sans second membre :
\[
\frac{dx}{dt} = Ax.
\]

Théorème 3.2.3. — La solution générale de l’équation avec second membre s’obtient en ajoutant à une solution particulière de l’équation avec second membre, la solution générale de l’équation sans second membre.

Le tout est de trouver une solution particulière de l’équation avec second membre. Pour ceci on applique la méthode de variation de la constantes. On a vu que la solution générale de l’équation sans second membre s’écrit :
\[
e^{tA} V.
\]
On va chercher une solution particulière de l’équation complète sous la forme :
\[
\phi(t) = e^{tA} V(t).
\]
On a donc (A commute avec e^{tA}) :
\[
\phi'(t) = Ae^{tA} V(t) + e^{tA} V'(t) = Ae^{tA} V(t) + B(t),
\]
ce qui donne :
\[
e^{tA} V'(t) = B(t).
\]
3.2. LES ÉQUATIONS LINÉAIRES À COEFFICIENTS CONSTANTS

On en déduit :

\[V'(t) = e^{-tA} B(t), \]

et donc (n’oublions pas que nous cherchons une solution particulière quelconque) :

\[V(t) = \int_{t_0}^{t} e^{-uA} B(u) du, \]

si bien que :

\[\phi(t) = e^{tA} \int_{t_0}^{t} e^{-uA} B(u) du, \]

soit encore :

\[\phi(t) = \int_{t_0}^{t} e^{(t-u)A} B(u) du. \]

La solution générale de l’équation complète s’écrit :

\[\psi(t) = \int_{t_0}^{t} e^{(t-u)A} B(u) du + e^{tA} V, \]

ce qui fait que si on cherche la solution qui vaut \(x_0 \) pour \(t = t_0 \) on obtient :

\[\psi(t) = \int_{t_0}^{t} e^{(t-u)A} B(u) du + e^{(t-t_0)A} x_0. \]

3.2.3. Le cas d’une équation d’ordre \(n \). — Revenons ici sur les équations du type :

\[\phi^{(n)}(t) + a_{n-1} \phi^{(n-1)}(t) + \cdots + a_1 \phi'(t) + a_0 \phi(t) = 0. \]

Nous avons vu que ce type d’équations se ramène à un système différentiel. Donc on peut appliquer la théorie générale que nous venons de développer. Cependant dans ce cas, la forme de la solution générale est suffisamment simple pour être décrite. Si on pose

\[P(X) = X^n + \sum_{k=1}^{n} a_{n-k} X^{n-k}, \]

alors \(P(\lambda) \) est le polynôme caractéristique de la matrice \(A \) du système. Nous laissons au lecteur le soin de démontrer les deux résultats suivants :

Théorème 3.2.4. — L’ensemble des solutions \(\phi(t) \) est un sous-espace vectoriel de dimension \(n \) de l’espace vectoriel des fonctions de \(\mathbb{R} \) dans \(\mathbb{R} \).
Théorème 3.2.5. — Soient \(\lambda_1, \lambda_2, \cdots, \lambda_s \) les racines distinctes de \(P(\lambda) \) (c’est-à-dire les valeurs propres de la matrice \(A \) du système), avec les multiplicités respectives \(m_1, m_2, \cdots, m_s \) \((m_1 + m_2 + \cdots + m_s = n) \). On obtient une base de l’espace des solutions en prenant pour tout \(i \) \((1 \leq i \leq m_i) \) les fonctions :

\[
e^{\lambda_i t}, te^{\lambda_i t}, t^2 e^{\lambda_i t}, \cdots, t^{m_i - 1} e^{\lambda_i t}.
\]

Autrement dit la solution générale s’écrit :

\[
\sum_{i=1}^{s} \sum_{\nu=0}^{m_i-1} \alpha_i t^\nu e^{\lambda_i t}.
\]

Dans le cas où il n’y a pas de racines multiples, le résultat se simplifie en :

\[
\sum_{i=1}^{n} \alpha_i e^{\lambda_i t}.
\]

Remarque : En ce qui concerne les racines complexes, elles se regroupent deux par deux, à savoir une racine et la racine conjuguée, pour donner des fonctions \(\sin \) et \(\cos \).

3.3. Les équations linéaires à coefficients variables

Toute une partie de l’étude, demeure valide pour le cas d’un système où la matrice \(A \) est une fonction de \(t \). Cependant il faut bien dire que la résolution algébrique n’est plus aussi systématique que dans le cas des coefficients constants. En particulier, la résolution complète de l’équation sans second membre n’est pas toujours possible avec des fonctions classiques. Les méthodes d’attaques peuvent alors être très diverses, par exemple le développement en série entière des solutions est une option qui peut donner des résultats.

La démarche de résolution est la même que pour les équations linéaires à coefficients constants : on commence par essayer de résoudre l’équation sans second membre, puis on applique la méthode de la variation de la constante.
3.3. LES ÉQUATIONS LINÉAIRES À COEFFICIENTS VARIABLES

Considérons l’équation sans second membre :

\[\frac{dx}{dt} = A(t)x, \]

où \(A(t) \) est matrice carrée de taille \(m \), fonction continue de \(t \) sur un intervalle \(I \). Soit \(t_0 \) un point de \(I \) : soit \(x_0 \) un point de \(\mathbb{R}^m \), alors il existe une solution maximale \(\phi_{x_0} \) et une seule définie sur \(I \) telle que \(\phi_{x_0}(t_0) = x_0 \). L’ensemble \(S \) des solutions maximales définies sur \(I \) est un sous-espace vectoriel de l’espace des fonctions de \(I \) dans \(\mathbb{R}^m \), et l’application de \(\mathbb{R}^m \) dans \(S \) qui à un point \(x_0 \) fait correspondre la solution \(\phi_{x_0} \) est une application linéaire bijective. Ceci montre que \(S \) est un sous-espace vectoriel de dimension \(m \) de l’espace des fonctions de \(I \) dans \(\mathbb{R}^m \).

Remarque : Attention de ne pas appliquer aveuglément ce résultat à des cas différents où les hypothèses ne sont pas réalisées. En particulier, si l’équation résulte d’une équation linéaire d’ordre \(n \) :

\[\sum_{i=0}^{n} a_i(t) \frac{d^ix}{dt^i} = 0 \]

alors la présence du coefficient \(a_n(t) \) nous fait sortir de la forme sous laquelle on a présenté les systèmes. Pour retrouver la forme habituelle, on doit tout diviser par ce coefficient \(a_n(t) \). Mais si \(a_n(t) \) a des zéros (points singuliers), on n’est plus dans l’hypothèse de continuité de \(A(t) \). Et là, des comportements autres peuvent se produire. Si \(u \) est un point singulier, il peut se produire que les solutions pour \(t < u \) et pour \(t > u \) se recollent pour donner une solution globale, définie aussi au point singulier. Mais alors, on ne peut plus affirmer que la dimension de l’espace des solutions est \(m \). Prenons l’exemple suivant :

\[t \frac{dx}{dt} - 2x = 0. \]

On prend un intervalle \(I \) qui ne contient pas 0. La solution générale sur \(I \) de cette équation sans second membre est

\[x(t) = C t^2. \]

Si maintenant on prend \(I = \mathbb{R} \), et si on définit :

\[x_1(t) = \begin{cases} t^2 & \text{si } x < 0 \\ 0 & \text{si } x \geq 0 \end{cases} \]
ainsi que :

\[x_2(t) = \begin{cases}
0 & \text{si } x < 0 \\
 t^2 & \text{si } x \geq 0
\end{cases} \]

alors \((x_1(t), x_2(t))\) est une base de l’espace des solutions. Autrement dit, on a une équation du premier ordre qui a un espace de solutions de dimension 2. En fait, si on prend un intervalle qui contient 0 alors les solutions pour \(t < 0\) et pour \(t > 0\) se raccordent en \(t = 0\) et la solution générale s’écrit :

\[x(t) = C_1x_1(t) + C_2x_2(t). \]
CHAPITRE 4

ANALYSE NUMÉRIQUE DES ÉQUATIONS DIFFÉRENTIELLES

4.1. Introduction

4.1.1. Position du problème. — Nous nous intéressons ici aux méthodes à un pas d’intégration des équations différentielles du premier ordre. Précisons le problème que nous nous posons. Nous cherchons à résoudre numériquement le problème de Cauchy

\begin{equation}
\begin{cases}
y' = f(x, y) \\
y(x_0) = y_0.
\end{cases}
\end{equation}

Dans toute la suite on supposera qu’il existe un voisinage compact \(V \) du point \((x_0, y_0)\) tel que la fonction \(f \) soit continue sur \(V \) et lipschitzienne par rapport à \(y \) uniformément par rapport à \(x \). C’est-à-dire qu’il existe une constante \(L \) telle que pour tout \(x \), tout \(y_1 \), tout \(y_2 \) tels que \((x, y_1) \in V \) et \((x, y_2) \in V \) on ait

\[|f(x, y_2) - f(x, y_1)| \leq L |y_2 - y_1|. \]

Nous noterons aussi

\[M = \sup_{(x, y) \in V}|f(x, y)|. \]

Soit \(T > 0 \) tel que

\[[x_0 - T, x_0 + T] \times \{y \mid |y - y_0| \leq MT\} \subset V. \]

On sait alors qu’il existe une solution unique qu’on notera \(\phi \) du problème de Cauchy (28) définie sur l’intervalle \([x_0 - T, x_0 + T]\).
Nous allons chercher à approcher la fonction ϕ sur l’intervalle $[x_0, x_0 + T]$ (ou sur l’intervalle $[x_0 - T, x_0]$).
Dans certains cas on sera amené à faire des hypothèses plus fortes sur la régularité de la fonction f, ce qui entrainera une plus forte régularité de la fonction solution ϕ.

4.1.2. Notations. — On choisit un partage

$$x_0 < x_1 < \cdots < x_n = x_0 + T$$
de l’intervalle d’étude $[x_0, x_0 + T]$, et on pose

$$h_k = x_{k+1} - x_k.$$

On définit aussi

$$H = \max_{0 \leq k \leq n-1} h_k.$$

La fonction ϕ étant la solution du problème (28) on pose pour $0 \leq k \leq n$

$$y_k = \phi(x_k).$$

Une méthode numérique à un pas permettra de calculer une approximation de y_k à partir d’une approximation de y_{k-1}.

4.2. Généralités sur les méthodes

Partons de la formule

$$\phi(x + h) = \phi(x) + \int_0^h \phi'(x + t)dt.$$

Une première idée pour calculer $y_1 = \phi(x_1) = \phi(x_0 + h_0)$ est d’utiliser cette formule, donc d’écrire

$$y_1 = y_0 + \int_0^{h_0} \phi'(x_0 + t)dt,$$

puis d’évaluer l’intégrale

$$\int_0^{h_0} \phi'(x_0 + t)dt$$

par une méthode de calcul numérique approché d’intégrales.

4.2.1. Méthode de la tangente d’Euler. —
4.2. GÉNÉRALITÉS SUR LES MéTHODES

4.2.1.1. Description. — Utilisons comme méthode de calcul la méthode de Riemann. Nous obtenons alors

\[\int_{x_0}^{x_0+h} \phi(x_0 + t) dt = h_0 \phi'(x_0) + O(h_0^2), \]

ce qui donne

\[y_1 = y_0 + h_0 \phi'(x_0) + O(h_0^2). \]

Ceci nous conduit à prendre pour approximation du point \(y_1 \) le point \(u_1 \) défini par

\[u_1 = u_0 + h_0 f(x_0, u_0), \]

où \(u_0 \) est une approximation de \(y_0 \). Cette méthode nous donne au rang \(k \)

\[u_k = u_{k-1} + h_{k-1} f(x_{k-1}, u_{k-1}). \]

Cette méthode est appelée méthode de la tangente d’Euler en raison de l’interprétation géométrique suivante.
4.2.1.2. Interprétation géométrique. — On peut voir une équation différentielle comme la donnée d’un champ de vecteurs : à tout point
\((x, y)\) on fait correspondre le vecteur \((1, f(x, y))\) de coefficient directeur \(f(x, y)\). Le problème de Cauchy consiste à trouver la ligne de champ
qui passe par le point \((x_0, y_0)\). On la construit de manière approchée en traçant une ligne polygonale partant de \((x_0, y_0)\) et suivant tout
d’abord la direction de la tangente de coefficient directeur \(f(x_0, y_0)\) à la trajectoire en ce point. On arrive à un point \((x_1, y_1)\) et en ce point
on prend la direction indiquée par le champ de vecteurs, c’est-à-dire la
droite de coefficient directeur \(f(x_1, y_1)\). Évidemment en général dès le
point \((x_1, y_1)\) on a quitté la bonne trajectoire. Mais on peut espérer que
si on fait de petits pas, on ne décolle pas trop (cf. figure 1).

4.2.2. Méthode d’Euler modifiée. —

4.2.2.1. Description. — En améliorant la méthode d’intégration de
\[
\int_0^{h_0} \phi'(x_0 + t)dt
\]
par la méthode des trapèzes par exemple
\[
\int_0^{h_0} \phi'(x_0 + t)dt = \frac{h_0}{2} \left(\phi'(x_0) + \phi'(x_0 + h_0) \right) + O(h_0^3),
\]
alors
\[
\phi(x_0 + h) = \phi(x_0) + \frac{h_0}{2} (f(x_0, y_0) + f(x_0 + h_0, \phi(x_0 + h_0)) + O(h_0^3),
\]
soit encore
\[
y_1 = y_0 + \frac{h_0}{2} (f(x_0, y_0) + f(x_1, y_1)) + O(h_0^3).
\]
Malheureusement au second membre intervient la valeur \(y_1\) que l’on veut
justement calculer. On peut penser à utiliser une méthode d’approxima-
tions successives pour calculer \(y_1\) : on injecte une valeur approchée de
\(y_1\) dans le second membre de la formule précédente et on obtient une
nouvelle valeur approchée de \(y_1\) qu’on espère meilleure dans le premier
membre de la formule. Pour cela on part de la valeur approchée \(v_1\) de \(y_1\)
donnée par la méthode précédente de la tangente d’Euler
\[
v_1 = u_0 + h_0 f(x_0, y_0)
\]
(dans ce calcul on considèrera que \(v_0 = y_0 \)). Est-il la peine d’aller plus loin dans la méthode des approximations successives ? Une évaluation de l’erreur nous donne

\[
f(x_1, \phi(x_0 + h_0)) - f(x_1, v_1) = (y_1 - v_1) \frac{\partial f}{\partial y}(x_1, y_1),
\]

ce qui donne en utilisant l’évaluation de l’erreur de la méthode d’Euler

\[
|f(x_1, \phi(x_0 + h_0)) - f(x_1, v_1)| = O(h_0^2).
\]

En conséquence, il n’est pas utile d’aller plus loin pour rester dans les limites d’une erreur en \(O(h_0^3) \) et on obtient en définitive

\[
y_1 = y_0 + \frac{h_0}{2} (f(x_0, y_0) + f(x_1, v_1)) + O(h_0^3),
\]

où

\[
v_1 = y_0 + h_0 f(x_0, y_0).
\]

En conclusion nous sommes amenés à prendre le schéma suivant

\[
\begin{align*}
 u_0 & \text{ est une valeur initiale proche de } y_0 \\
 v_k & = u_{k-1} + h_{k-1} f(x_{k-1}, u_{k-1}) \\
 u_k & = u_{k-1} + \frac{h_{k-1}}{2} (f(x_{k-1}, u_{k-1}) + f(x_k, v_k))
\end{align*}
\]

Cette méthode est appelée méthode d’Euler modifiée et admet l’interprétation géométrique suivante.

4.2.2.2. Interprétation géométrique. — Si partant du point \((x_0, y_0)\) la méthode de la tangente d’Euler faisant un bout de chemin sur la droite de coefficient directeur \(f(x_0, y_0) \) on arrive au point \((x_1, v_1)\) alors on fait la moyenne entre le coefficient directeur en \((x_0, y_0)\) et le coefficient directeur en \((x_1, v_1)\) et finalement on emprunte à partir de \((x_0, y_0)\) la droite ayant pour coefficient directeur cette moyenne (cf. figure 2).

4.2.3. Généralisation. — Le nombre \(u_0 \) étant une valeur approchée de \(y_0 \), on construit la suite \((u_k)_{k \geq 0}\) en partant de \(u_0 \) et en calculant \(u_k \) pour \(k \geq 1 \) par une formule récurrente du type :

\[
u_k = u_{k-1} + h_{k-1} \Phi(x_{k-1}, u_{k-1}, h_{k-1}).
\]
C’est ce qu’on appelle une méthode à un pas. Par exemple dans la méthode d’Euler on prend :

\[\Phi(x, y, h) = f(x, y) \]

et dans la méthode d’Euler modifiée :

\[\Phi(x, y, h) = \frac{1}{2} (f(x, y) + f(x + h, y + hf(x, y))). \]

La question est alors la suivante : comment obtenir une fonction \(\Phi \) intéressante.

4.2.3.1. Première idée : la formule de Taylor. — On peut penser à la formule de Taylor, ce qui nous donne :

\[y_1 = y_0 + h\phi'(x_0) + \cdots + \frac{h^n}{n!}\phi^{(n)}(x_0) + O(h^{n+1}). \]
Posons :

\[f^{(0)}(x, y) = f(x, y), \]

\[f^{(1)}(x, y) = \frac{\partial (f^{(0)})}{\partial x}(x, y) + \frac{\partial (f^{(0)})}{\partial y}(x, y)f(x, y), \]

et plus généralement :

\[f^{(k)}(x, y) = \frac{\partial (f^{(k-1)})}{\partial x}(x, y) + \frac{\partial (f^{(k-1)})}{\partial y}(x, y)f(x, y). \]

Il est clair que :

\[f^{(k)}(x, \phi(x)) = \phi^{(k+1)}(x), \]

si bien que :

\[y_1 = y_0 + h \left(f^{(0)}(x_0, y_0) + \frac{h}{2} f^{(1)}(x_0, y_0) + \cdots + \frac{h^{(p-1)}}{p!} f^{(p-1)}(x_0, y_0) \right) + O(h^{p+1}). \]

On est donc amené à poser :

\[\Phi(x, y, h) = f^{(0)}(x, y) + \frac{h}{2} f^{(1)}(x, y) + \cdots + \frac{h^{(p-1)}}{p!} f^{(p-1)}(x, y). \]

Il est visible que dans cette méthode, le calcul des dérivées successives peut s’avérer compliqué. De plus l’erreur est difficile à contrôler et peut être catastrophique si les dérivées de \(f \) ne sont pas “petites”.

4.2.3.2. Deuxième idée : une formule d’intégration. — Cette idée, que nous avons évoquée au début de cette section, consiste à partir de \(q > 0 \) nombres réels \(c_1, c_2, \cdots, c_q \) distincts ou non, d’écrire des formules de quadrature numérique du type :

\[\int_0^{c_i} \psi(t) \, dt \approx \sum_{j=1}^q a_{ij} \psi(c_j) \quad (31) \]

et :

\[\int_0^1 \psi(t) \, dt \approx \sum_{j=1}^q b_{j} \psi(c_j). \quad (32) \]

Rappelons que l’intervalle \([x_0, x_0 + T]\) a été découpé sous la forme :

\[x_0 < x_1 \cdots < x_n = x_0 + T. \]
Chaque sous-intervalle $[x_k, x_{k+1}]$ où $x_{k+1} = x_k + h_k$ contient lui-même un sous-découpage basé sur q points. Ces q points sont les points :

$$x_{k,i} = x_k + c_i h_k,$$

où $1 \leq i \leq q$. Alors les formules de quadrature numérique choisies nous permettent d’écrire :

$$\phi(x_{k,i}) = y_k + \int_{x_k}^{x_{k,i}} f(t, \phi(t))dt,$$

ce qui donne l’approximation :

$$\phi(x_{k,i}) = y_k + h_k \sum_{j=1}^{q} a_{i,j} f(x_{k,j}, \phi(x_{k,j})).$$

On peut aussi écrire :

$$\phi(x_k + h_k) = y_k + \int_{x_k}^{x_k + h_k} f(t, \phi(t))dt,$$

ce qui donne l’approximation :

$$y_{k+1} \approx y_k + h_k \sum_{j=1}^{q} b_j f(x_{k,j}, \phi(x_{k,j})).$$

Ces considérations permettent de penser au schéma suivant :

$$\begin{align*}
 u_{k,i} & = u_k + h_k \sum_{j=1}^{q} a_{i,j} f(x_{k,j}, u_{k,j}) \\
 u_{k+1} & = u_k + h_k \sum_{j=1}^{q} b_j f(x_{k,j}, u_{k,j}) \\
 x_{k,j} & = x_k + c_j h_k,
\end{align*}$$

où

$$\begin{align*}
 0 & \leq k \leq n - 1 \\
 1 & \leq j \leq q \\
 1 & \leq i \leq q.
\end{align*}$$

En posant :

$$K_{k,i} = f(x_{k,i}, u_{k,i})$$
on obtient :

\[
\begin{cases}
K_{k,i} = f \left(x_{k,i}, u_k + h_k \sum_{j=1}^{q} a_{i,j} K_{k,j} \right) \\
u_{k+1} = u_k + h_k \sum_{j=1}^{q} b_j K_{k,j}.
\end{cases}
\]

(34)

Le schéma ainsi décrit peut être explicite : le calcul de \(u_{k,i} \) (ou de \(K_{k,i} \)) ne fait intervenir que des \(u_{k,j} \) (dés \(K_{k,j} \)) avec \(j < i \), c'est-à-dire déjà calculés, ou implicite dans le cas contraire.

Il reste à savoir comment choisir les coefficients \(a_{i,j}, b_j, c_j \), c'est-à-dire quelles formules de quadrature choisir. Toutes ces méthodes rentrent sous la dénomination commune de méthode de Runge-Kutta. Cependant une de ces méthodes porte le nom de méthode de Runge-Kutta classique.

4.2.4. Les méthodes de Runge-Kutta.

Nous retrouvons bien entendu par ce principe général les cas déjà traitées.

- **Méthode d’Euler.** Dans ce cas on prend \(q = 1 \), \(c_1 = 0 \), \(a_{1,1} = 0 \), \(b_1 = 1 \). Avec ces valeurs on retrouve effectivement la méthode d’Euler.

- **Méthode d’Euler modifiée.** Dans cette méthode aussi appelée méthode de Heun on prend \(q = 2 \), \(c_1 = 0 \), \(c_2 = 1 \), \(a_{1,1} = 0 \), \(a_{1,2} = 0 \), \(a_{2,1} = 1 \), \(a_{2,2} = 0 \), \(b_1 = 1/2 \), \(b_2 = 1/2 \). Les méthodes d’intégration utilisées sont d’une part la méthode des rectangles pour la méthode d’intégration numérique (31) où \(i = 2 \) (pour \(i = 1 \) il n’y a rien à faire) et celle des trapèzes pour la méthode d’intégration numérique (32).

Toujours pour \(q = 2 \) on peut généraliser cette méthode en prenant un nombre \(0 < \alpha \leq 1 \) puis \(c_1 = 0 \), \(c_2 = \alpha \), \(a_{1,1} = 0 \), \(a_{1,2} = 0 \), \(a_{2,1} = 1 \), \(a_{2,2} = 0 \), \(b_1 = 1 - 1/(2\alpha) \), \(b_2 = 1/(2\alpha) \). Pour \(\alpha = 1 \) on obtient la méthode de Heun, pour \(\alpha = 1/2 \) on obtient une méthode basée sur la méthode du milieu pour la méthode d’intégration numérique (32) et la méthode des rectangles pour le calcul (31).

- **Méthode de Runge-Kutta classique.** On prend \(q = 4 \), \(c_1 = 0 \), \(c_2 = 1/2 \), \(c_3 = 1/2 \), \(c_4 = 1 \), \(a_{2,1} = 1/2 \), \(a_{3,2} = 1/2 \), \(a_{4,3} = 1 \), les autres \(a_{i,j} \) sont nuls, \(b_1 = 1/6 \), \(b_2 = 1/3 \), \(b_3 = 1/3 \), \(b_4 = 1/6 \).
On peut alors écrire le schéma de calcul de la façon suivante :

\[
\begin{align*}
K_{k,1} &= f(x_k, u_k) \\
K_{k,2} &= f\left(x_k + \frac{h_k}{2}, u_k + \frac{h_k}{2}K_{k,1}\right) \\
K_{k,3} &= f\left(x_k + \frac{h_k}{2}, u_k + \frac{h_k}{2}K_{k,2}\right) \\
K_{k,4} &= f\left(x_{k+1}, u_k + h_kK_{k,3}\right) \\
u_{k+1} &= u_k + h_k\left[\frac{K_{k,1}}{6} + \frac{K_{k,2}}{3} + \frac{K_{k,3}}{3} + \frac{K_{k,4}}{6}\right].
\end{align*}
\]

\((35)\)