EXERCICE: ON A COUNTEREXAMPLE RELATIVE TO ABEL'S ANGULAR CONVERGENCE THEOREM

ROBERT ROLLAND

1. Introduction

Let us recall the following theorem due to Abel (angular convergence theorem):
Theorem 1.1. Let $S(z)=\sum_{n=0}^{+\infty} a_{n} z^{n}$ be a power serie of convergence radius R. Let $z_{0}=R e^{i \theta_{0}}$ be a complex number such that $\left|z_{0}\right|=R$. We suppose that the serie $S\left(z_{0}\right)$ is convergent. Let $\theta_{1} \in\left[0, \frac{\pi}{2}\right]$. Let us define the set

$$
\begin{gathered}
A=\{z \in \mathbb{C} ;|z|<R \text { and it exists } \\
\rho>0 \text { and } \theta \in] \theta_{0}-\theta_{1}, \theta_{0}+\theta_{1}\left[\text { such that } z=z_{0}-\rho e^{i \theta}\right\} .
\end{gathered}
$$

Then $S(z)$ is continuous on $A \cup\left\{z_{0}\right\}$. In particular the following holds

$$
\lim _{z \rightarrow z_{0}, z \in A} S(z)=S\left(z_{0}\right)
$$

We develop now an example showing that the limitation to a subset like A is mandatory. More precisely, if we allow z to approach tangentially z_{0} the result is no longer guaranteed.

2. The Example

Let $\left(x_{n}\right)_{n>0}$ be the sequence of integers defined by

$$
\begin{cases}x_{2 p} & =3^{p} \\ x_{2 p+1} & =2.3^{p}\end{cases}
$$

We study the power serie

$$
S(z)=\sum_{n>0} \frac{z^{x_{n}}}{n}
$$

1) What is the convergence radius of this power serie?
2) Prove that the serie converges for $z=-1$.
3) Show that we can find a sequence $\left(z_{m}\right)_{m}$ of complex number such that

$$
\left|z_{m}\right|<1, \lim _{m \rightarrow+\infty} z_{m}=-1 \text { and } \lim _{m \rightarrow+\infty}\left|S\left(z_{m}\right)\right|=+\infty
$$

Hint: watch the points $z=e^{2 i \pi \frac{p}{34}}$.

[^0]
3. Solution

1) $S(1)=+\infty$ (harmonic serie), then $R \leq 1$. On the other hand, if $|z|<1$ we have

$$
\sum_{n>0} \frac{|z|^{x_{n}}}{n} \leq \sum_{n>0}|z|^{n}
$$

Hence the serie converges absolutely for $\mid z<1$. We conclude that the convergence radius of the serie is 1 .
2) We remark that x_{n} is odd when n is even and is even when n is odd. Then

$$
S(-1)=\sum_{n>0} \frac{(-1)^{x_{n}}}{n}=\sum_{n>0} \frac{(-1)^{n+1}}{n}
$$

which is the alternating harmonic serie. Hence the serie converges for $z=-1$ and moreover $S(-1)=\ln (2)$.
3) Note first that it is possible to find two sequences $\left(p_{m}\right)_{m>0}$ and $\left(q_{m}\right)_{m>0}$ of positive integers such that

$$
\lim _{m \rightarrow+\infty} \frac{p_{m}}{3^{q_{m}}}=\frac{1}{2}
$$

For example let $\left(\frac{r_{m}}{q_{m}}\right)_{m>0}$ be the continued fractions of $\log _{2}(3)$. Then

$$
\lim _{m \rightarrow+\infty} \frac{r_{m}}{q_{m}}=\log _{2}(3)
$$

and moreover

$$
\left|\log _{2}(3)-\frac{r_{m}}{q_{m}}\right|<\frac{1}{q_{m}^{2}}
$$

We conclude that

$$
\left|q_{m} \log _{2}(3)-r_{m}\right|<\frac{1}{q_{m}}
$$

Then

$$
\begin{gathered}
\lim _{m \rightarrow+\infty}\left(r_{m}-q_{m} \log _{2}(3)\right)=0 \\
\lim _{n \rightarrow+\infty} \frac{2^{r_{m}}}{3^{q_{m}}}=1
\end{gathered}
$$

Let us set $p_{m}=2^{r_{m}-1}$, we have the desired result:

$$
\lim _{m \rightarrow+\infty} \frac{p_{m}}{3^{q_{m}}}=\frac{1}{2}
$$

Let us set

$$
z_{m}=\lambda_{m} e^{2 i \pi \frac{p_{m}}{3^{4 m}}}
$$

where $0<\lambda_{m}<1$. When $n>2 q_{m}$ we have

$$
e^{2 i \pi \frac{p_{m}}{34 m} x_{n}}=1
$$

Hence:

$$
S\left(z_{m}\right)=\sum_{n>0} \frac{\lambda_{m}^{x_{n}} e^{2 i \pi \frac{p_{m}}{34 m} x_{n}}}{n}=\sum_{n=1}^{2 q_{m}} \frac{\lambda_{m}^{x_{n}} e^{2 i \pi \frac{p_{m}}{34 m} x_{n}}}{n}+\sum_{n>2 q_{m}} \frac{\lambda_{m}^{x_{n}}}{n}
$$

and consequently

$$
\left|S\left(z_{m}\right)\right| \geq \sum_{n>2 q_{m}} \frac{\lambda_{m}^{x_{n}}}{n}-2 q_{m} \geq \sum_{n=2 q_{m}+1}^{K} \frac{\lambda_{m}^{x_{n}}}{n}-2 q_{m}
$$

where K is such that

$$
\sum_{n=2 q_{m}+1}^{K} \frac{1}{n}>(1+\epsilon)\left(m+2 q_{m}\right)
$$

Let $0<\lambda_{m}<1$, then

$$
\left|S\left(z_{m}\right)\right| \geq \lambda_{m}^{x_{K}} \sum_{n=2 q_{m}+1}^{K} \frac{1}{n}-2 q_{m} \geq \lambda_{m}^{x_{K}}(1+\epsilon)\left(m+2 q_{m}\right)-2 q_{m}
$$

Let $\eta>0$ such that $(1-\eta)^{x_{K}}(1+\epsilon)>1$. If $(1-\eta)<\lambda_{m}<1$ we have $\left|S\left(z_{m}\right)\right|>$ m. Then it is possible to construct a sequence $\left(\lambda_{m}\right)_{m>0}$ such that $0<\lambda_{m}<1$, $\lim _{m \rightarrow+\infty} \lambda_{m}=1$ and $\left|S\left(z_{m}\right)\right|>m$. We can see now that $\lim _{m \rightarrow+\infty} z_{m}=-1$ and $\lim _{m \rightarrow+\infty}\left|S\left(z_{m}\right)\right|=+\infty$.

Aix-Marseille Université, CNRS, Centrale Marseille, I2M UMR 7373, 13453, Marsellle, France

E-mail address: robert.rolland@acrypta.fr

[^0]: Date: October 29, 2018.

