
EXERCICE: ON A COUNTEREXAMPLE RELATIVE TO ABEL’S
ANGULAR CONVERGENCE THEOREM

ROBERT ROLLAND

1. Introduction

Let us recall the following theorem due to Abel (angular convergence theorem):

Theorem 1.1. Let S(z) =
∑+∞
n=0 anz

n be a power serie of convergence radius R.
Let z0 = Reiθ0 be a complex number such that |z0| = R. We suppose that the serie
S(z0) is convergent. Let θ1 ∈ [0,

π

2
]. Let us define the set

A = {z ∈ C ; |z| < R and it exists

ρ > 0 and θ ∈]θ0 − θ1, θ0 + θ1[ such that z = z0 − ρ eiθ}.
Then S(z) is continuous on A ∪ {z0}. In particular the following holds

lim
z→z0, z∈A

S(z) = S(z0).

We develop now an example showing that the limitation to a subset like A is
mandatory. More precisely, if we allow z to approach tangentially z0 the result is
no longer guaranteed.

2. The example

Let (xn)n>0 be the sequence of integers defined by{
x2p = 3p

x2p+1 = 2.3p.

We study the power serie

S(z) =
∑
n>0

zxn

n
.

1) What is the convergence radius of this power serie?

2) Prove that the serie converges for z = −1.

3) Show that we can find a sequence (zm)m of complex number such that
|zm| < 1, limm→+∞ zm = −1 and limm→+∞ |S(zm)| = +∞.

Hint: watch the points z = e2iπ
p
3q .
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3. Solution

1) S(1) = +∞ (harmonic serie), then R ≤ 1. On the other hand, if |z| < 1 we
have ∑

n>0

|z|xn

n
≤
∑
n>0

|z|n.

Hence the serie converges absolutely for |z < 1. We conclude that the convergence
radius of the serie is 1.

2) We remark that xn is odd when n is even and is even when n is odd. Then

S(−1) =
∑
n>0

(−1)xn

n
=
∑
n>0

(−1)n+1

n

which is the alternating harmonic serie. Hence the serie converges for z = −1 and
moreover S(−1) = ln(2).

3) Note first that it is possible to find two sequences (pm)m>0 and (qm)m>0 of
positive integers such that

lim
m→+∞

pm
3qm

=
1

2
.

For example let
(
rm
qm

)
m>0

be the continued fractions of log2(3). Then

lim
m→+∞

rm
qm

= log2(3)

and moreover ∣∣∣∣log2(3)− rm
qm

∣∣∣∣ < 1

q2m
.

We conclude that
|qm log2(3)− rm| <

1

qm
.

Then
lim

m→+∞

(
rm − qm log2(3)

)
= 0,

lim
n→+∞

2rm

3qm
= 1.

Let us set pm = 2rm−1, we have the desired result:

lim
m→+∞

pm
3qm

=
1

2
.

Let us set
zm = λm e

2iπ pm
3qm ,

where 0 < λm < 1. When n > 2qm we have

e2iπ
pm
3qm xn = 1.

Hence:

S(zm) =
∑
n>0

λxn
m e2iπ

pm
3qm xn

n
=

2qm∑
n=1

λxn
m e2iπ

pm
3qm xn

n
+
∑

n>2qm

λxn
m

n
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and consequently

|S(zm)| ≥
∑

n>2qm

λxn
m

n
− 2qm ≥

K∑
n=2qm+1

λxn
m

n
− 2qm

where K is such that
K∑

n=2qm+1

1

n
> (1 + ε) (m+ 2qm).

Let 0 < λm < 1, then

|S(zm)| ≥ λxK
m

K∑
n=2qm+1

1

n
− 2qm ≥ λxK

m (1 + ε) (m+ 2qm)− 2qm.

Let η > 0 such that (1− η)xK (1 + ε) > 1. If (1− η) < λm < 1 we have |S(zm)| >
m. Then it is possible to construct a sequence (λm)m>0 such that 0 < λm < 1,
limm→+∞ λm = 1 and |S(zm)| > m. We can see now that limm→+∞ zm = −1 and
limm→+∞ |S(zm)| = +∞.
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